# Special coatings for severe service: experimental approach by DAFRAM test bench

Eng. Marco Sparisci Lead Product Engineer

Eng. Enrico Palmieri Eng. Alessandro Panichella Research&Development







## Introduction

- Higher and higher performances required in the Oil&Gas field
- Importance of durability in hard conditions
- Relevance of special coatings for valve metallic parts
- Avoid:
  - Galling
  - Erosion
  - Corrosion



- Chemical characterization
  - X-ray spectroscopy





- Chemical characterization
  - X-ray spectroscopy
- Metallographic characterization
  - Powder examination and microstructure:

Scanning Electron Microscope (SEM)





- Chemical characterization
  - X-ray spectroscopy
- Metallographic characterization
  - Powder examination and microstructure:

Scanning Electron Microscope (SEM)

Porosity: image analysis



IVS 2015 • International Conference on Valve and Flow Control Technologies



- Mechanical properties
  - Microhardness





- Mechanical properties
  - Microhardness
  - Bend test





- Mechanical properties
  - Microhardness
  - Bend test
  - Adhesion test (Pull-off, Scratch...)





- Mechanical properties
  - Microhardness
  - Bend test
  - Adhesion test (Pull-off, Scratch...)
- Tribological properties
  - Pin-on-disc





- Mechanical properties
  - Microhardness
  - Bend test
  - Adhesion test (Pull-off, Scratch...)
- Tribological properties
  - Pin-on-disc

- Rubber Wheel Wheel Sand Sand Sand So Pound Load Wear Test Specimen (forced against rubber wheel)
- Sand abrasion test (ASTM G65 and ASTM G105 02)



- Nevertheless, traditional analysis presents some limits of adherence to reality
  - Deformations of parts under pressure





- Nevertheless, traditional analysis presents some limits of adherence to reality
  - Deformations of parts under pressure
  - Contact between ball and seat rings





- Nevertheless, traditional analysis presents some limits of adherence to reality
  - Deformations of parts under pressure
  - Contact between ball and seat rings
  - Temperature effects (Process Fluid)





#### A more practical approach: tests on surface coatings





#### A more practical approach: tests on surface coatings



![](_page_15_Picture_0.jpeg)

#### A more practical approach: tests on surface coatings

![](_page_15_Figure_2.jpeg)

![](_page_16_Picture_0.jpeg)

#### Test results: torque – angle graph

![](_page_16_Figure_2.jpeg)

![](_page_17_Picture_0.jpeg)

#### Test results: torque – angle graph

![](_page_17_Figure_2.jpeg)

![](_page_18_Picture_0.jpeg)

#### Test results: torque – angle graph

![](_page_18_Figure_2.jpeg)

![](_page_19_Picture_0.jpeg)

## Test results: maximum torque trend

![](_page_19_Figure_2.jpeg)

![](_page_20_Picture_0.jpeg)

## Failure caused by galling of the specimen

![](_page_20_Figure_2.jpeg)

![](_page_21_Picture_0.jpeg)

## Failure caused by detected leakage

![](_page_21_Figure_2.jpeg)

![](_page_22_Picture_0.jpeg)

## Case study application: test conditions

- Simulated pressure class: ANSI CL 1500
- Ball-seats: ASTM A479 gr. F51 WC coated
- Test #1: 1000 cycles at room temperature
- Test #2: 1000 cycles at 250°C
- Focus on leakage and torque trends
- Test results as average of each set (3 specimens)

![](_page_23_Picture_0.jpeg)

# Case study application: room temperature test

![](_page_23_Figure_2.jpeg)

- Maximum torque value (for each cycle)
- Room temperature
- 1000 cycles

![](_page_24_Picture_0.jpeg)

## Case study application: room temperature test

![](_page_24_Figure_2.jpeg)

- Leakage monitored (in terms of pressure drop) every 50 cycles
- Room temperature
- 1000 cycles

![](_page_25_Picture_0.jpeg)

## Case study application: high temperature test

![](_page_25_Figure_2.jpeg)

- Test temperature: 250°C
- 1000 cycles

29/05/15 IVS 2015 • International Conference on Valve and Flow Control Technologies

interruption

![](_page_26_Picture_0.jpeg)

## Case study application: high temperature test

![](_page_26_Figure_2.jpeg)

29/05/15 IVS 2015 • International Conference on Valve and Flow Control Technologies

![](_page_27_Picture_0.jpeg)

## Case study application: final comparison

- Coating A: moderate leakage, maximum torques 626 Nm (at room temperature) and 670 Nm (at high temperature)
- Coating B: leakage starting from first cycle (room temperature), remarkable leakage at high temperature (no galling), maximum torques 568 Nm (at room temperature)
  638 Nm (at high temperature)
- Coating C: moderate leakage, maximum torque at room temperature 690 Nm, galling occurred during high temperature test for one of the specimens: test failed

![](_page_28_Picture_0.jpeg)

## Conclusions

- Accurate simulation of real working conditions of coated valve components
- Reliable ranking between different coatings (wear and galling resistance, friction)
- Evaluation of expected lifetime of real applications
- Useful tool to develop new coating solutions
- Support for End Users on specific applications and processes

![](_page_29_Picture_0.jpeg)

#### Questions ??

![](_page_29_Picture_2.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

29/05/15