Permanent impermeability monitoring of the stem sealing of valves

Samuel Weber Manfred Goßmann KLINGER SCHÖNEBERG GmbH

Project overview – 'Smart Ball Valve'

Main topics

Project overview - 'Smart Ball Valve'

Main topics

- <u>Sub-project:</u> Permanent impermeability monitoring of the stem sealing of valves
- Objective:Development of a system for the permanent and direct
tightness monitoring and analysis of the stem sealing of a
quarter turn valve
- <u>Timeline:</u> November 2014 \rightarrow June 2015
- Projektteam:KLINGER SCHÖNEBERG GmbHKempchen Dichtungstechnik GmbHVarious suppliers of sensorsystems

Main issues

- Permanent monitoring of the tightness of the stem sealing
 - Not only as a snapshot under testing conditions or under operation conditions elaborately with sniffing equipment
 - Monitoring in all operating conditions (independent of media, process pressure, process temperature, process-related load changes, ...)
- Apllicability of the system to all quarter turn valves
 - Comparability of various valve types of various valve manufacturers
 - Independence of tests and certificates of manufacturers and inspection companies

Main issues

- Recording and analysing of data of the system
 - Statements about the remaining functionality of valves regarding external leakage
 - Combination of data regarding the external leakage with other data of monitored valveparts/ functions
 - Maintenance and substitution of valves when needed not preventive
 - Test cycles of valves/ plants regarding realistic estimation
 - Extension of the MTBS (MeanTime Between Shutdown)
- \rightarrow Increasing of the safety in the working areas and the environment
- \rightarrow Reducing of the maintenance and loss of production costs

Completed Tasks

Defining of specification book and requirements list

- About 50 requirements defined
 - Function
 - Geometry
 - Leakage limits
 - Materials
 - Signal transmission
 - Manufacturing
 - Assembling
 - Usage
 - Maintanance-free
 - Reuse of parts

• ...

Requirements list – extract

Permanent monitoring of the leakage of the stem sealing

- Monitoring of leakage values below thresholds acc. to ISO 15848 or VDI 2440 (national german regulation)
 - E.g. VDI 2440 \rightarrow T < 250°C \rightarrow 10⁻⁴ mbar*liter/(second*meter)

Ball Valve INTEC K200 DN50 PN40 → 10⁻⁵ mbar*liter/second

(middle circumference of the sealing = 0,09m)

Flow types	Leakage rate [mbar*l/s]
Turbulent	>10 ⁻²
Laminar	$10^{-2} - 10^{-6}$
Transition	$10^{-6} - 10^{-7}$
Molecular	<10-7

Leakage Testing Handbook, Prepared for Liquid Propulsion Section, Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, California

Completed Tasks

Finding of principle solutions

- Team
- Development of possible principle solutions regarding the task
- Selection of the most promising solution
- Arrangement of the further development of this solution

Completed Tasks

Further development of the selected solution

- Tight Chambering of the area above the stem sealing
 - Guarantee of functionality of the actuation
- Measurement of the pressure changing in the chamber regarding the leakage
 - High sensitive sensorsystem
- Conjunction of the pressure changing with leakage values and admissible emission limits
- Conjunction of the sensorsystem with smart software to forecast the exceeding of the emission limits
- → Direct and straight measurement of the leakage of the stem sealing

Completed Tasks

Production of prototypes

- Parts for the connection of valves and actuators
- Assembly of the high sensitive sensorsystem

Completed Tasks

Testing of the prototypes

- Monitoring of the leakage of the stem sealing of a standard valve with a helium mass spectrometer
- Monitoring of the leakage with the new system
- Comparison of the determined values

Testing conditions	
Valve	INTEC K200 DN50 PN40
Test device	Leybold Ultratest UL 100 Plus
Insepction sensitivity	2 * 10 ⁻¹⁰ mbar*l/s
Medium	Helium 99,996%
Pressure	6bar
Temperature	23°C

Results of the tests

The first tested prototypes don't fulfill all of the defined requirements

- \rightarrow The recorded signals of the sensor cannot definitely be assigned to leakage values
- → Within the leakage range of 10⁻⁸ mbar*l/s to 10⁻² mbar*l/s it is difficult to get repeatable signals
- \rightarrow No possibility to generate reliable data for the analysis below 10⁻² mbar*l/s

Realised reason

The sensitivity of the used sensor is not sufficient for the requirements

Looking forward

Next steps

- Research about sensors with a higher sensitivity
- Producing of a new prototype of the sensorsystem
- Testing of the system with the same test conditions

Expected results

Recording of sensorsignals witch can be definitely assigned to leakage values within the leakage range of 10⁻⁸ mbar⁺l/s to 10⁻² mbar⁺l/s

Looking forward

Interim conclusion

- Sub-project in final development status
 - Positive results will be expected
- Mainproject 'Smart Ball Valve' will be followed up and finalised in the near future
 - Plant operators will be in a position to safe costs and operate their plants safely

Thank you for your attention!