The challenge to introduce a KPI for valve reliability to be used in projects with Valve Manufacturers, EPCs and End-Users

Andreas Vogt – Managing Partner / CEO F.I.R.S.T. - Gesellschaft für technischwissenschaftliche Softwareanwendungen mbH

A KPI for Valve Reliability?

- Why do we need a KPI?
- What is a KPI for Valve Reliability?
- How to apply a KPI in projects?
- What are the challenges
 - o practically applying a KPI?
 - o using it in projects with multiple parties?
- What is the benefit / cost ratio?

Why do we need a KPI?

• Are you a valve nerd?

Some, maybe most of us will answer "For sure not"

- So what's the answer to the following question:
 - "How can I reproducible decide if a valve matches the given process conditions so that it performs reliable in any mode of operation?"
 - Gut instinct?
 - Rules of thumb?
 - Applying best practices?

••••

Why do we need a KPI?

- To ensure that independent from the individual doing the analysis the given rating is reproducible identical
- To allow analysing valve cases by "non-nerds" having "only" the process conditions
- To quickly detect the severe cases out of a big population of cases
- To be able to predict the impact of changing process conditions

Why do we need a KPI?

- To review the full range of operating conditions: (Min, Norm, Max, Start-up, ... 0% to 100% of valve opening)
- To ensure that you don't miss something

Quick definition of the KPI

- A KPI called Reliability index "Ri"
- A single number for each operating / process condition
- The range of the value is defined
 - $_{\circ}$ 0 to 0.1 No reliability problems expected
 - 0.1 to 0.5 Possible reliability problems
 - 0.5 to 1 Limited reliability
 - >1
 Possible mechanical damage
- Additional information about the root cause when "Ri" > 0
- Hints to improve reliability when "Ri" > 0

Deriving of the KPI

- To calculate the KPI, all major reliability influencing factors need to be taken into account.
- General parameters like
 - Δp
 - Energy conversion
 - Noise level
 - Outlet flow velocity
 - Valve type

- Flow conditions
 - Cavitation
 - Flashing
 - Choked flow
- Fluid properties
- Process conditions
 - Normal operation
 - Start-up
 - Special operation

29/05/15 IVS 2015 • International Conference on Valve and Flow Control Technologies

How to apply a KPI in projects?

- Determine the KPI with final operating conditions for all modes of operation
- Follow the hints, discuss and select more suitable solutions
- Ensure that finally no valve will be selected with a KPI > 0.1

• Sounds easy, isn't it?

Challenges applying the KPI

Process data / specification

- Data transfer in paper or PDF format
 - Data quality aspect (typos)
 - Processing speed
- Data not complete
- Data not correct
- Data changing last minute
- Data not covering all modes of operation (e.g. Start-up)

Used calculation methods

Example noise prediction

- Noise level for KPI
 - latest standards for liquid, gas and steam
- Noise level from vendor
 - Proprietary
 - maybe not latest standard

Challenges applying the KPI

Best practice versus KPI rules

Example outlet velocity

- KPI
 - Velocity in outlet flange
 - Gas and steam up to 0.3 Mach
- Vendor or EPC
 - Velocity in the outlet pipe
 - Gas and steam up to 0.5 Mach

Vendor data

Missing valve data

- xFz for noise and cavitation prediction
- FL² choked flow liquid
- XT choked flow gas & vapour
- ...

Special challenges in projects

Communication

- The biggest challenge at all
- 3+ parties involved
- Project workflow is not yet designed to use a KPI as a central quality control element
- There is no common data language for cycling specification and selection data
- No common practice established yet

Does that all make sense?

- What is the benefit cost ratio?
- A BCR of 30 to 100 is realistic!
- Verified in a pilot project
- Confirmed by recalculating past projects

Questions & Discussion