Lower costs and improve quality in valve coating procedures: The Universal Pipe Coating approach to paint specification

Adam Ovington AkzoNobel – International Paint

Overview

- Protective Coatings for Valve applications: the current state of play
- Limitations of the incumbent approach
 - The specifications
 - The coatings
 - Conventional ambient temperate anticorrosive systems
 - Zinc silicates
 - Epoxy phenolic
 - High temperature silicones and silicone acrylics
- Reduce complexity, improve quality, lower cost

Introduction

- Protective coatings are applied to valves to protect against a wide variety of end use environments:
 - Extreme temperatures -196-650C
 - Insulated and uninsulated service
 - Stainless and carbon steel substrates
 - Constant and cyclic temperature operation
 - Onshore and offshore environments

Introduction

- The practical application of coating valves is not straight forward
 - Multiple items to coat, to the same standard every time
 - Small intricate parts
 - Tight angles and sharp edges
 - Paint shop pressures of moving, turning and throughput
 - Final touch up and packaging

The Specifications

 The wide variety end use environments has been addressed by the inclusion of various specific coating schemes – producing

specifications such as these:

TABLE B3-1 - COATING SCHEDULI	Scope	Specification	l	System	(040
Surface Description and No	Non-insulated C.S. ambient temp to 120°C	Surface prep. Primer Intermodiate	: abrasive blast cleaning to ISO Sa 2.5 (R _z = 50-75 μm) : 75μm of 2-pack Epoxy zinc rich (organic zinc) : 150μm of 2-pack epoxy: MIO	A	CIC
CS Equipment and Piping, Shop Fabricate		Finish	: 50µm of 2-pack epoxy MO		2
Non-insulated, to 100 (Flex to 121)	Non-insulated C.S.	Surface prep.	: abrasive blast cleaning to ISO Sa 2.5 (R_z = 30-75 µm)	_	2-
Non-insulated, 101 to 260 (Flex to 260)	121°C to 200°C	Finish	 2 x 30µm of silicone acrylic coating 	в	
Non-insulated, 261 to 400 (Flex to 400)	Non-insulated C.S.	Surface prep.	: abrasive blast cleaning to ISO Sa 2.5 (R_z = 30-75 µm)		2-
Non-insulated, sub-ambient (sweating servi	201°C to 400°C	Primer Finish	: 75µm of 2-pack ethyl zinc silicate (inorganic zinc) : 2 x 25µm of single pack silicone-based coating	С	2.
Insulated, -46 to 150 (Flex to 204)	Non-insulated C.S.	Surface prep.	: abrasive blast cleaning to ISO Sa 2.5 (R_z = 30-75 µm)	D	
Insulated, 151 to 260 (Flex to 260)	401°C to 540°C Non-insulated C S	Coating	: 2 x 25µm of single pack silicone based coating		2.
Insulated, 261 to 400 (Flex to 400)	vessels and cyclic	Surface prep.	: abrasive blast cleaning to ISO Sa 2.5 (Rz = 50-75 μm) · 2 x 100μm of Titanium Modified Inorganic Co-Polymer	Р	
Fireproofed equipment supports	temperature piping. Ambient to 400 °C	country	2 h 100pm of Frankan Stochiek morgane 00 f orymet.	-	SUR
Personnel Protection – same as uninsulate	Non-insulated C.S.	Surface prep. Coating	: abrasive blast cleaning to ISO Sa 2.5 (R_z = 50-75 μm) : 1 x 175 μm of Titanium Modified Inorganic Co-Polymer.	Q (Note 1)	
Heat Traced – same as insulated	Constant operating temperature piping				(pipi (Not
SS, High Alloy Equipment and Piping, She	Ambient to 565 °C			(21012 2)	CIC
Non-insulated, to 100 (Flex to 121)	Non-insulated	Surface prep. Primer Finish	 Light abrasive blast cleaning (R_z = 30-50 μm) 100 μm of 2 pack epoxy phenolic primer 100 μm of 2 pack epoxy phenolic finish 	Е	N
Non-insulated, 101 to 260 (Flex to 260)	-196 °C to 200°C			(Note 2)	2-
Insulated, -200 to 150 (Flex to 204)	Non-insulated/ non-	surface prep.	prep. : light abrasive blast cleaning ($R_z = 30-50 \ \mu m$)		(No
Insulated, 151 to 260 (Flex to 260)	steel ambient	primer finish	or treatment with mordant/etching solution	F	
Fireproofed equipment supports	temperature (in case of		: 50µm of 2-pack acrylic polyurethane		2-

(Structura	al steel, pi	iping ves	STEEL BARE (UNINSULATE	D)	
	n otool, p		sel tanks exchangers heaters stacks etc.)	- /	
OLOL E		.p	sei, tanks, exenangers, neutors, stacks, etc.)		
CIULE	OPER.	SURF.	DESCRIPTION	THK.	PAINT
N°	TEMP.	PREP.		MICR.S	TYPE
				(4)	
	Below	Sa	primer : INORGANIC ZINC	75	101
2-1	120°C	2,5	intermediate : POLYAMIDE EPOXY	125	201
			finish : ALIPHATIC ACRILIC	50	204
			POLIURETHANE		
	121°C	Sa	primer : INORGANIC ZINC	75	101
2-2	to	2,5	intermediate : SILICONE ACRYLIC	40	202
	200°C		finish: : SILICONE ACRYLIC	40	202
	201°C	Sa	primer : INORGANIC ZINC	75	101
2-3	to	2,5	intermediate : SILICONE ALUMINUM	25	203
	400°C		finish : SILICONE ALUMINUM	25	203
	401°C	Sa	primer : SILICONE PRIMER	25	102
2-4	to	2,5	intermediate :		
	540°C	(Note 1)	finish : SILICONE ALUMINUM	25	203
				411.07	OTEE
SURFAC	ESTOB	E PAINTE	D: CARBON STEEL AND LOW	ALLOY	SIEEL
			INSULATED FOR HEAT/COLD	CONSER	VATION
/ninina ···	anal to:	ka avata	DR PERSONNEL PROTECTION		
(piping, ve (Mete 2)	essel, tan	iks, excha	ngers operating discontinuously)		
(Note 2)					
CICLE	OPER.	SURF.	DESCRIPTION	THK.	PAINT
N°	TEMP.	PREP.		MICR.S	TYPE
				(4)	
2-6	150°C	Sa 2,5	primer : SILICONE ACRYLIC	40	202
(Note7)	to		intermediate :		
	200°C	(Note 1)	finish : SILICONE ACRYLIC	40	202
	200°C	Sa 2.5	primer : SILICONE PRIMER	25	102
2-7	to		intermediate :		
	540°C	(Note 1)	finish : SILICONE ALUMINUM	25	203

The specifications

- In some cases up to 10 different coating schemes
 - Each with a specific dry film thickness to achieve
 - Each with a different composition and application considerations

- Possibility of an item having an unsuitable coating applied?
- Possibility of the coating in question being applied incorrectly?
- Possibility of the coating being outside of QC requirements?

The Products

 A number of coating technologies or systems dominate most valve and piping specifications

• While each perform well within there specific target areas, each has limitation around end use area or application flexibility

Conventional ambient temperate anticorrosive systems

Zinc silicates

<u>Pros</u>

 Excellent corrosion protection up to 540°C for uninsulated carbon steel

<u>Cons</u>

Unsuitable for use beneath thermal

Epoxy phenolics

<u>Pros</u>

•

•

- Excellent when used beneath insulation
 - Capable of withstanding the wet, elevated

 Widely available and relatively straight forward to store and apply provided they are used within specification.

<u>Cons</u>

- Limited atmo
 - Limited t
 - Lower pe
- Lack of UV d
- Limited topcc
- Limited tolera
- Increases the cracking and

on protection

٦C

on thickness. or subsequent re in the field.

29/05/15 IVS 2015 • International Conference on Valve and Flow Control Technologies

High temperature silicones and silicone acrylics

<u>Pros</u>

- Temperature resistance up to 540°C
- Option of a zinc silicate primer for uninsulated carbon steel end uses,
- Blended acrylic resins can offer colours up to 260°C
- Widely used in some specifications for constant, elevated operating temperatures

<u>Cons</u>

- Thin films and limited barrier performance contribute to a lack of long term corrosion protection
- Unsuitable for services which will spend any amount of time a ambient temperature
- Unsuitable for use beneath insulation
- Questionable suitability for use protecting stainless, direct to metal

Limitations of conventional systems

	Conventional anticorrosive scheme	Zinc silicates	Epoxy phenolics	Silicones and silicone acrylics
Suitability for use on stainless steel	No	No	Yes	Yes
Suitability for use beneath insulation	No	No	Yes	Sometimes
Suitability of use at ambient temperature	Yes	Yes	Sometimes	No
Very sensitive to film build?	No	Yes	Yes	No
Cure time and recoating restrictions	No	Yes	Yes	Yes

Summary

- The current landscape for valve coatings is populated by:
 - Long and complex specification documents
 - Numerous coating products, some of which have very demanding application characteristics.
- This approach:
 - Increases the risk of incorrect coating application
 - Incorrect product applied to a certain area
 - Right product, incorrectly applied
 - Costs time and money
 - Segregating items and equipment correctly
 - Varying QC requirements
 - Rectifying inevitable mistakes

The path forward.....

- Simplicity
- » Fewer products
- » Product that are easy to use
- Less segregation
- Less error
- » Improved quality
- » Reduced cost

The Solution

- Looking at the current technology available there **IS** scope to achieve this.
 - Using an organic based material for all requirements up to c.200C
 - Using an inorganic material for all requirements from 200C to 650C
- The challenge....
 - The incumbent systems, although complicated, perform well in the specific area
 - Any new approach must be able to demonstrate equal or better performance across a range of environments

Key performance criteria

- Ambient temperature corrosion protection comparable to a traditional 3 coat system
- Equal corrosion under insulation protection to an epoxy phenolic
- Suitability of use on stainless
- Ease of application in line with conventional ambient temperature systems
- Film build tolerance well in excess of epoxy phenolic and zinc silicate chemistry

Simplified approach

• Given this performance criteria valve, piping and OEM specifications could feasibly be reduced to the following two systems

Scope	Specification	
Insulated and Non- insulated Carbon Steel and Stainless Steel to 200°C	1st Coat 2 nd Coat	≈175µm Organic Based Coating ≈175µm Organic Based Coating
Insulated and Non- insulated Carbon Steel and Stainless Steel 200°C to 650°C	1st Coat 2 nd Coat	≈100µm Inorganic Based Coating ≈100µm Inorganic Based Coating

The Benefits

- Fewer products to stock and manage
- Higher productivity
- Greater painter proficiency
- Less cleaning of equipment and lines
- Reduced risk of error
- Easier on site maintenance and hook up

Thanks for your time

Adam Ovington Temperature Resistant Market Manager International Paint AkzoNobel