ISO 15848-1: comparison with new fugitive emission standards

Emmanuel SAUGER

Cetim

Project overview

- ISO 15848-1 is published since March 2006: "Classification system and qualification procedures for type testing of valves"
 - End of DIS Enquiry (23/06/2014). Result of votes: approved.
 - FDIS Enquiry (November 2014 January 2015). Result of votes: approved.
 - Publication of ISO 15848-1 rev 2 : June 2015
- Test program at Cetim
 - Study of ISO 15848-1 changes
 - Study of a valve performance (with the same packing) using various existing fugitive emission standards

ISO 15848-1 (March 2006)

• Type of valve

- ON/OFF
- Control

Source of emission

- Stem seal system
- Body-bonnet seal

• Test fluid

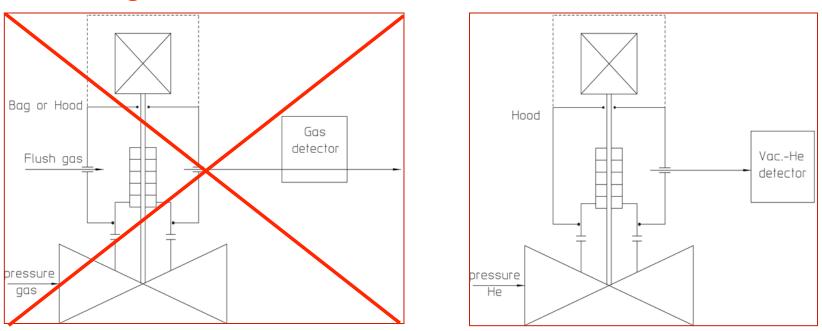
- Helium
- Methane

• Test pressure

- Pressure class (P/T rating)

• Fugitive emission measurement

- Global method (stem seal)
- Sniffing (body-bonnet seal)

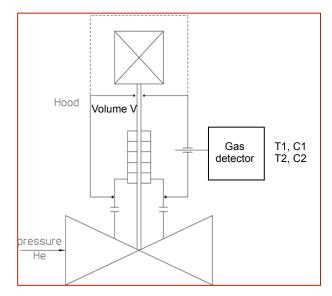

Performance class

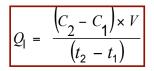
- Tightness class
- Endurance class
- Temperature class

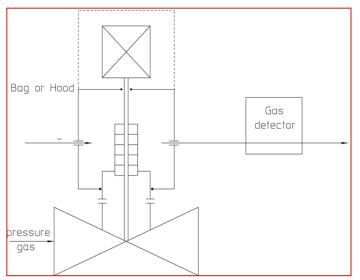
ISO 15848-1 (March 2006) – Global methods

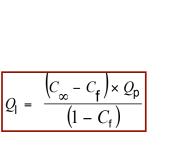
Flushing

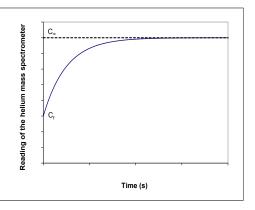
Global methods are quantitative, reliable, reproducible


Vacuum method


Difficult to perform, often need adaptation of the valve


New global methods


Accumulation (EN 13185)



Suck through Method »

ISO 15848-1 (March 2006) – Tightness classes

- Helium and methane
 - Stem seal system

		-	▲ ···· · · · · · · · · · · · · · · · ·
Leak rate – Global measurement mg.s ⁻¹ .m ⁻¹		ng.s ⁻¹ .m ⁻¹)	
AH & AM	10 ⁻⁶	-eak rate (mg	Stabilisation time t ₂
BH & BM	10-4	Leat	
CH & CM	10-2		

H : Helium mg.s⁻¹.m⁻¹ per meter of stem circumference

M : Methane

。 Body-bonnet seal

Leakage – Sniffing (local measurement) ppmv		
Helium	≤ 50	
Methane	≤ 50	

Stabilisation time t₄

Leakage 1

t₂

t₁

Time (s)

Leakage 2

ISO 15848-1 (March 2006) – Tightness classes

- Helium
 - Stem seal system

	Class	Measured leak rate (mass flow)	Measured leak rate (mass flow)	Measured leak rate (volumic flow)	Remarks	
		mg.s ^{.1} .m ^{.1} stem perimeter	mg.s ^{.1} .mm ^{.1} stem diameter through stem seal system	mbar.l.s ⁻¹ per min stem diameter through stem seal system	New unit	
Vaccum	AHª	≤ 10 ⁻⁵	≤ 3,14 10 ^{.8}	≤ 1,78·10 ^{.7}	Typically achieved with bellow seals or equivalent stem (shaft) sealing system for quarter turn valves	
+ accumulation	₿Н₽	≤ 10 ^{.4}	≤3,14 10 ^{.7}	≤ 1,78·10 ⁻⁶	Typically achieved with PTFE based packings or elastomeric seals	
& suck through	СНР	≤ 10 ⁻²	≤3,14 10 ⁻⁵	≤ 1,78·10 ^{.4}	Typically achieved with flexible graphite based <u>packings</u>	
	A Measured by the year washed as defined in Anney A					

Measured by the vacuum method as defined in Annex A.

^b Measured by the total leak rate measurement method (vacuum or bagging) as defined in Annex A.

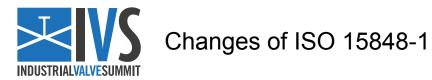
Body seal

Measured leakage

≤ 50

NOTE Measured by the sniffing method as defined in Annex B.

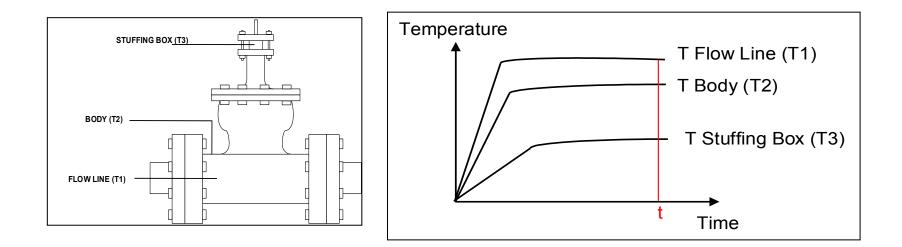
ISO 15848-1 (March 2006) – Tightness classes


- Methane
 - Stem seal system

Class	Measured leakage (sniffing method as described in Annex B) ppmv
AM	≤ 5 0
BM	≤ 100
СМ	≤ 5 00

Body seal

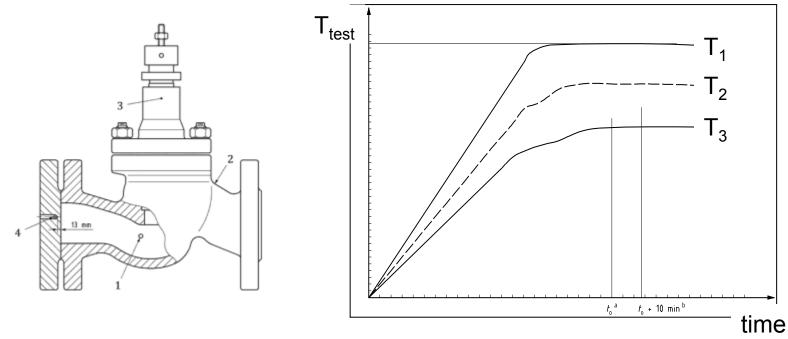
Measured leakage (sniffing method as described in Annex B) ppmv ≤ 50


 § 6.2.4 There is no correlation intended between measurements of total leak rate as described in Annex A and local sniffed concentration as described in Annex B.

ISO 15848-1 (March 2006) – Temperature classes

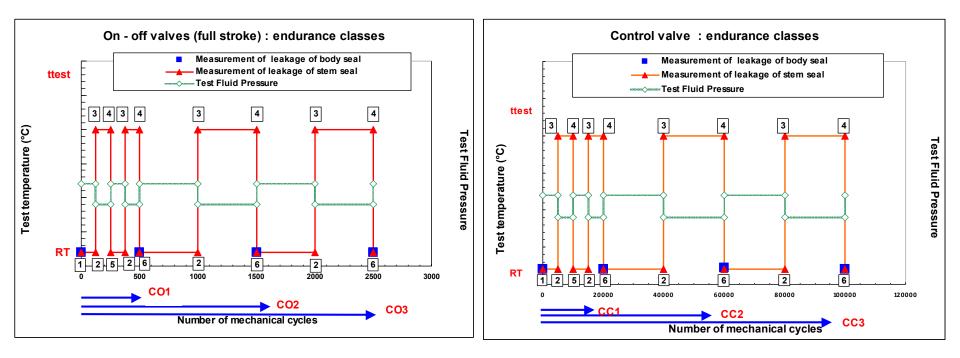
(t-196)	(t-46°C)	(tRT)	(t200°C)	(t400°C)
- 196°C	-46 [°] C	Room temperature °C	200 [°] C	400 [°] C

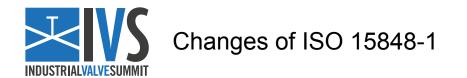
• Reference flow line temperature

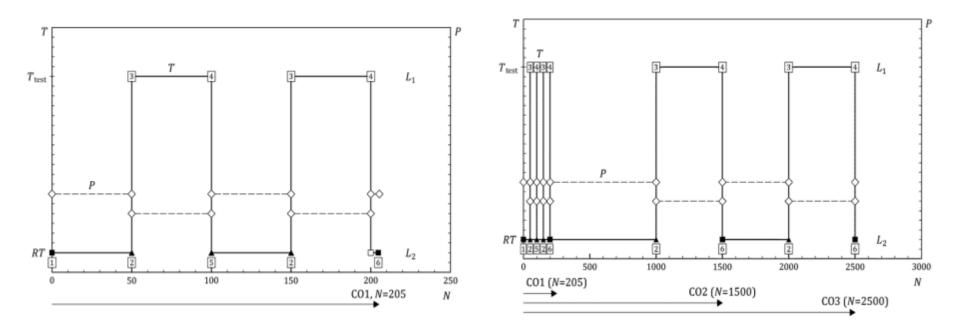


ISO 15848-1 (March 2006) – Temperature classes

(t-196 °C)	(t-46 °C)	(tRT)	(t200 °C)	(t400 °C)
– 196 °C	– 46 °C	Room temperature, °C	200 °C	400 °C


• Temperature reference at location 1 (flow line)


Optional thermocouple: location 4 may be used instead of location 1


ISO 15848-1 (March 2006) – Endurance classes

- Mechanical cycles + Thermal cycles
- Nature and number of cycles are different for ON/OFF and Control Valves

ISO 15848-1 (March 2006) – Endurance classes

- CO1: 2 thermal cycles + 205 mechanical cycles
- CO2 et CO3 unchanged

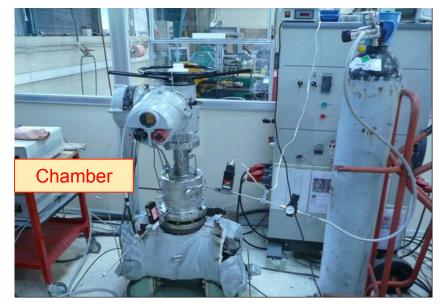
Publication of EN ISO 15848-1 and 2 : June 2015

Study of ISO 15848-1 changes – comparison with other standards

ISO 15848-1: Testing facilities

03/2014 : ISO 17025 Certification by French Committee COFRAC

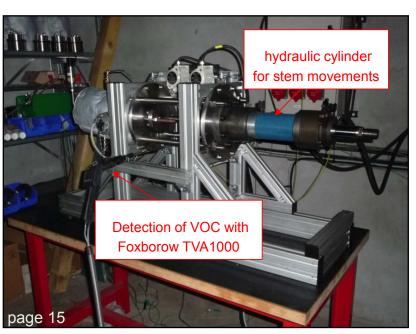
Validation of High Quality Measurements



- Test capacity:
 - 18" (15 tonnes)
 - 450 bar
 - -150°C to 450°C

Study of ISO 15848-1 changes

- Work program with French Valve Manufacturers
 - Instrumentation of a valve (API 600, 4"CI300) to perform helium and methane measurements with various methods (vacuum, accumulation, suck through, sniffing)
 - Graphite based packings
 - ISO 15848-1 helium and $CH_4 \rightarrow$ influence of test fluid and method
 - API 624 helium and $CH_4 \rightarrow$ influence of test fluid and sniffing



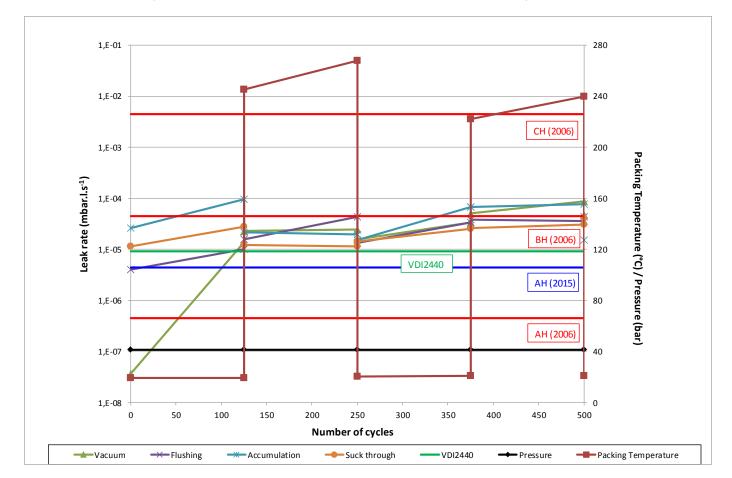
Study of ISO 15848-1 changes

Work program

- Test on API 622 bench with the same packings
 - API 622 according API622 and API624
 - To compare API622 and API624
 - To compare test on valve and test on bench

Current status

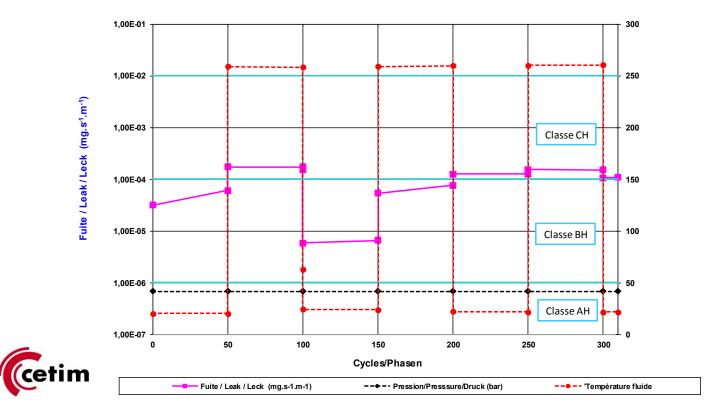
• Progress from the previous work


Step	Description	Status
1	Instrumentation of a valve (Atex heating system,)	\checkmark
2	Helium test according to ISO 15848-1	\checkmark
2	Methane test according to ISO 15848-1	in progress
3	Helium test according to API624	\checkmark
5	Methane test according to API624	in progress
	Methane test according to API622	\checkmark
4	Methane test according to API624	\checkmark
	Helium test according to API641	in progress
5	Methane test according to API641	in progress

Study of ISO15848-1 changes – comparison with other standards

Study of ISO 15848-1 changes

• Some results (CO1; 260°C - SSS; 41,4 bar)


- good agreement between the methods
- Vacuum method is well adapted for class AH

Study of ISO15848-1 changes – comparison with other standards

Study of ISO 15848-1 changes

Some results (API624; Helium; 260°C - SSS; 41,4 bar)

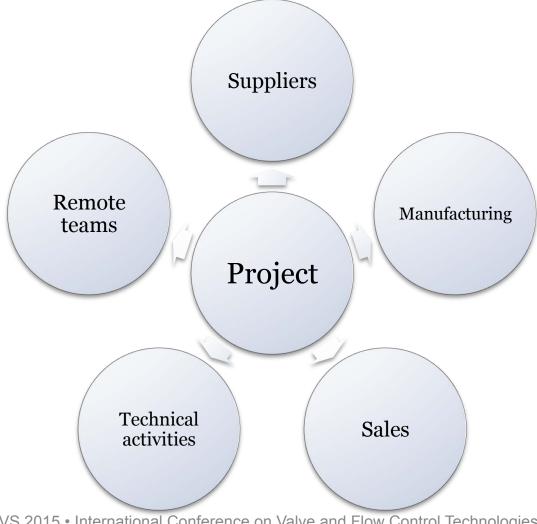
- Decrease of the leak rate during the first return at ambient temperature
- Leak rate close to those measured with ISO 15848-1

- Conclusion
 - $_{\odot}$ Second revision of EN ISO 15848-1 will be published in June of 2015
 - $_{\odot}$ ISO 15848-1 main changes are the following
 - leak rate at the stem seal (Table 1) is expressed in **mbar.I.s**⁻¹ **per mm stem diameter**;
 - flushing method is replaced by **accumulation or suck through method** to measure leak rate from stem seal with Helium (Annex A);
 - leakage with methane is measured by sniffing; leakage is expressed in ppmv;
 - for tightness Class AH, **leak rate ≤ 1,78·10-7** (10-5 mg.s-1.m-1) → *TA Luft;*
 - tightness classes (Table 3): AM ≤ 50 ppmv; BM ≤ 100 ppmv; CM ≤ 500 ppmv;
 - there is **no correlation** intended between helium (Class AH, Class BH, Class CH) and methane tightness classes (Class AM, BM and Class CM);
 - minimum number of mechanical cycles required for isolating valves: **205 cycles** (instead of 500) with two thermal cycles.

- Looking forwad
 - \circ A study is in progress
 - To evaluate impact of ISO 15848-1 changes (e.g. new possible leak rate measurements, comparison with VDI2440-TA Luft...)
 - To develop Test Rigs using methane as test fluid (API 622, API624, API641...)
 - To compare ISO 15848-1 with other procedures with various parameters
 - Test fluid
 - Thermal cycles
 - Mechanical cycles
 - Leakage measurement methods

 Continuous evolution of test capacities of the Sealing Technology Lab to answer all kind of specific demand and ISO or API valve sealing system characterization

Acknowledgements to French Valve Manufacturers & to Profluid


Looking forward

- Expiry of the next item
- Expected results
- Risks and known issues
 - Expected time for the analysis of these issues
- Actions and measures immediately following

Dependencies and resources

IVS 2015 • International Conference on Valve and Flow Control Technologies

Addendum

Addendum

- Budget
- Design documents
- Marketing plan
- Additional documents
- Contact information