Nonlinear FE approach for design by analysis of valves:

advantages for optimization and cost reduction

Stefano Cavalleri EnginSoft SpA

Introduction

- The use of FEA in the valve's design workflow is necessary to be <u>COMPETITIVE ON THE MARKET</u>
- Advantages of design by analysis (**DBA**) for engineered valves:
 - Deep knowledge of the valve behaviour (*DIGITAL TWIN*)
 - Compliance with international code prescriptions (e.g. <u>ASME VIII div.2</u>)
 - Large range of operative scenarios analysed
 - Optimization of the valve geometry for cost reduction
 - Weight reduction
 - *RCA* in case of unexpected failures/low performances

Scope of the work

- Highlight the weakness of "elastic route" for valve assessment
- Describe the non-linear approaches available in design codes (e.g. ASME VIII div.2)
- Point out the advantages of non-linear approaches with practical examples:
 - Robustness / safety of the design
 - Design optimization and cost reduction
 - Assessment for serviceability
- Introduce Fatigue assessments / ECA

The "elastic route"

Limitations and disadvantages on the applications to valve's design

Elastic analysis: methodology

• **Protection against plastic collapse** (ASME VIII div.2)

- Linear elastic material
- Design conditions

STRESS CATEGORIES

• Primary membrane

• Primary membrane + bending

STRESS CHECK

• Allowable stress

Elastic analysis: weakness

• Limitations on the application of the elastic approach:

Difficulties on the assessment of complex geometries

Arbitrary interpretation of the results

Not applicable to high pressure valves

Optimization process difficult to implement

Elastic analysis: limitations

- The <u>categorization of stress</u>:
 - Elastic analysis is based on the definition of stress categories:
 - <u>Primary membrane stress (*Pm*)</u>: equivalent stress average across the thickness related to equilibrium excluding structural discontinuities
 - <u>Primary Membrane Plus Primary Bending (*Pm* + *Pb*): equivalent stress, derived from the highest value across the thickness, of the linearized primary membrane plus primary bending stresses related to equilibrium excluding structural discontinuities</u>
 - FE stress results must be linearized:

Elastic analysis: case study

• Example of correct stress linearization in a valve body

Elastic analysis: case study

• Example of non correct stress linearization in a valve body

Non suitable SCL:

- ✓ In correspondence of structural discontinuities
- Diagonally respect to cross section normal
- ✓ Nonlinear distribution of hoop stress
- ✓ Non-parabolic distribution of shear stress

Elastic analysis: case study

Example of secondary stress in a valve body

- Areas with stress level over $1.5 S_m$ (allowable for membrane + bending primary stress)
- Presence of gross/local structural discontinuity
- Bending stress due to forced compatibility

IVS 2017 • International Conference on Valve and Flow Control Technologies

Elastic analysis: summary of limitations

- Limitations of protection against plastic collapse with linear approach:
 - Applicable only for at <u>primary stress</u> regions
 - Linearization of stress must be done
 - Arbitrary selection of stress classifications
 - Gross/local structural <u>discontinuities cannot be assessed</u>
 - > Not applicable for <u>high pressure</u> valve (R/t < 4)
 - Conservative approach: <u>optimization difficult</u> to be performed

The non-linear approach

Advantages on the applications to valve's design

Linear vs. nonlinear approach

Elastic analysis

- Primary stress only
- Onerous postprocessing
- Arbitrary selection of results
- Not applicable to high pressure valves

Model easy to be implemented

Fast solution of FE model

Non-linear analysis

- Global assessment (primary & secondary stresses)
- Non arbitrary selection of results (robust method)
- Generally applicable (high pressure valves)
- Realistic stress/strain status
- Useful for valve optimization process

Model development more complex

Computationally onerous (longer time for solution)

IVS 2017 • International Conference on Valve and Flow Control Technologies

Linear vs. nonlinear approach

Linear approach

- <u>Allowable stress</u> design method
- Design loads only
- Evaluation of <u>stress</u> state
- <u>Safety factor</u> on stress limit
- Plasticization not allowed
- No serviceability criteria

Non-linear approach

- <u>Limit state</u> design method
- <u>Load combinations</u> with load factors
- Plasticization allowed
- Evaluation of <u>global stability</u> (Check respect to global collapse – Ultimate limit state)
- <u>Serviceability</u> criteria available (Service limit state)

Nonlinear analysis: methodology

• **Protection against plastic collapse** (ASME VIII div.2)

FE model

- Perfectly plastic material (limit load)
- Multilinear plasticity (elastic –plastic analysis)

Nonlinear analysis

- Progressive application of factorized load
- Convergence criteria

Assessment

 Acceptance criteria based on convergence of the analysis

Nonlinear analysis: load factorization

Limit load analysis

Elastic-plastic analysis

Criteria	Factored load combinations	Criteria	Factored load combinations
Design conditions		Design conditions	
			$2.4 (P + P_s + D)$
Global	1.5 (P + P _s + D)	Global	2.1 $(P + P_s + D + T) + 2.7L + 0.86S_s$
	$1.3 (P + P_s + D + T) + 1.7L + 0.54S_s$		2.1 (P + P _s + D) + 2.7S _S + (1.7L or 0.86W)
	1.3 (P + P _s + D) + 1.7S _S + (1.1L or 0.54W)		$2.1 (P + P_s + D) + 1.7W + 1.7L + 0.86S_S$
			$2.1 (P + P_s + D) + 1.7E + 1.7L + 0.34S_s$
	$1.3 (P + P_s + D) + 1.1W + 1.1L + 0.54S_s$	Local	1.7 (P + Ps + D)
	$1.3 (P + P_s + D) + 1.1E + 1.1L + 0.21S_s$	Service	Per User's Design Specification at operating

IVS 2017 • International Conference on Valve and Flow Control Technologies

• 24in 1500# top entry valve Norsok compact flange – Linear analysis

IVS 2017 • International Conference on Valve and Flow Control Technologies

• 24in 1500# top entry valve Norsok compact flange – Nonlinear analysis

- Factorized design load applied
- Convergence of analysis achieved
- Protection against plastic
 collapse satisfied
- Local plastic deformations
 at body/neck transition
- Local failure and serviceability to be checked

• 4in 1/6 high pressure expanding gate valve (API 10000#)

Protection against plastic collapse

- Heavy wall body (*R/t < 4*): Nonlinear approach requested by ASME VIII div.
 2
- **2.4 factor** for mechanical (pressure) loads
- **2.1 factor** for mechanical + thermal loads
- Acceptance criteria satisfied
- Need for check respect to plastic strain induced damage

• 4in 1/6 high pressure expanding gate valve (API 10000#)

ACCEPTANCE
CRITERIA
$$D = \frac{c_{tot}}{\varepsilon_L} \le 1$$
Damage $\varepsilon_L = \varepsilon_{Lu} \cdot \exp\left[-\left(\frac{\alpha_{sl}}{1+m_2}\right)\left(\frac{\sigma_1 + \sigma_2 + \sigma_3}{3\sigma_e} - \frac{1}{3}\right)\right]$ Limiting triaxial
strain

IVS 2017 • International Conference on Valve and Flow Control Technologies

Serviceability

Examples of analysis of operating/ emergency scenarios for the assessment of valve functionality

Serviceability check: case study

• Simulation of testing procedures (24in 900# top entry ball valve)

Serviceability check: case study 2

• Simulation of emergency closing of a swing check valve

Fatigue

Examples of fatigue assessments

Fatigue assessment: case study

• Thermal fatigue, 28in API 300# plug valve for petrochemical applications

REQUESTS:

- High temperature gradients (150°C ÷ 500°C)
- Cyclic operations (heating, steam quench, cooling)
- 10 years design life
- Critical areas for inspections

Fatigue assessment: case study

• Thermal fatigue, 28in API 300# plug valve for petrochemical applications

Fitness for service

ECA on welded valve

Assessment of flawed components

- Engineering critical assessment (ECA) on fully welded valves
 - Damage tolerant approach
 - Fitness for service purpose: API 579/ ASME FFS-1, BS-7910
 - No PWHT
 - Fracture mechanics and NDT combination: definition of the acceptability

IVS 2017 • International Conference on Valve and Flow Control Technologies

ECA analysis on fully welded valves: case study

- <u>Assessment procedure according to BS-7910</u>
 - Fracture mechanics body/closure weld
 - Residual stresses due to welding process

RESIDUAL STRESS MAP

CONCLUSIONS

- FEA is useful to achieve robust and safe design for valves
- Nonlinear DBA is the most suitable approach for valve analysis
 - Correct design check without excessive conservativism
 - Design optimization for material and weight reduction
 - Analysis of operating scenarios for serviceability check
 - Fatigue and fitness for service assessments
- Improvement of design
- Production and maintenance cost reduction

Key partner in Design Process Innovation

Stand 94 Room B