

Alternative and improved plating for ball & gate valve trims

Luca MAGAGNIN, Politecnico di Milano Paolo BERGAMINI, Hutchinson Gasket International

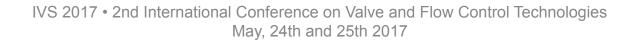
What is Electroless Nickel Plating?

- Chemical technique to deposit a nickel-phosphorus alloy through an autocatalytic process on a solid work piece
- Protection from corrosion and wear
- Self-lubrication properties facing the harsh Oil & Gas environments:
 - Abrasive and corrosive attacks
 - Temperature and pressure variations

What is K-EL 850[®] ?

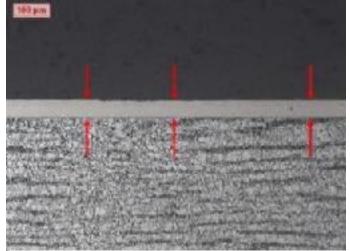
- K-EL 850[®] is a composite material made from the addition of shaped submicron Silicon Carbide particles into high phosphorus Electroless Nickel.
- K-EL 850[®] is used to enhance
 - Performance
 - Protection
 - Increased lifetime on Oil & Gas components

Solution of K-EL 850®

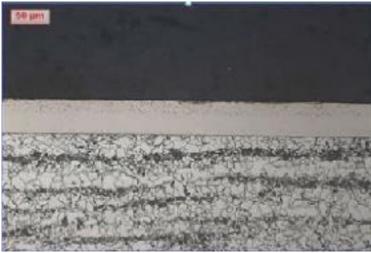

K-EL 850[®] for Oil & Gas applications

- ✓ Reduced wear
- ✓ Reduced friction
- ✓ Temperature ranging from cryogenic up to 850 °C
- \checkmark Allow the use of less noble alternative steel base materials
- ✓ Replace environmentally unsound coatings
- ✓ Reduced lead time

Extended characterization and lab testing

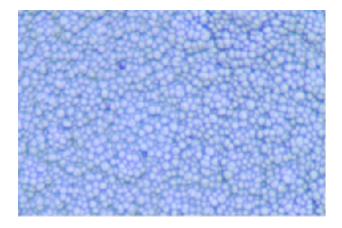


Surface thickness


- Uniform and measurable
- Smooth surface
- Uniform multilayer deposit
- No need for post coating grinding

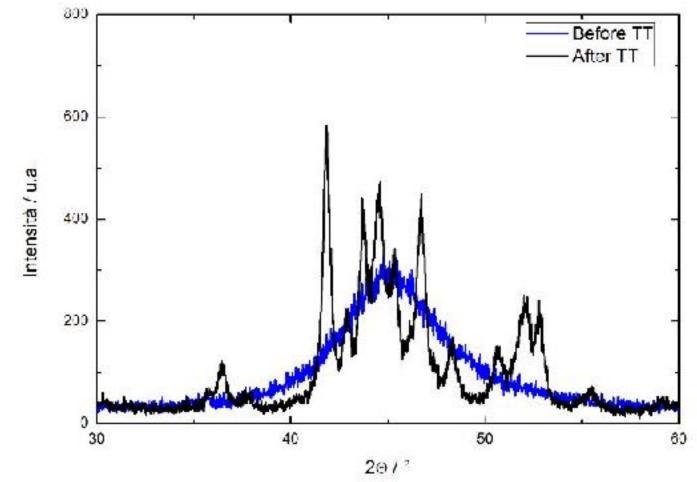
Cross section of double layer K-EL 850® deposit

K-EL 850[®] coated ball


Microscopic observation of 50µ K-EL 850® multilayers

Roughness

- Unique shape and dimension of submicron silicon carbide particles
- Low friction characteristics also at high temperature
- Same roughness of the substrate


Sub-micron particles of nickel silicon K-EL 850®

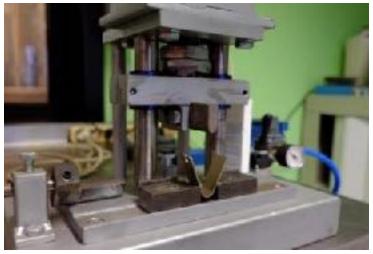
IVS 2017 • 2nd International Conference on Valve and Flow Control Technologies May, 24th and 25th 2017

X-Ray

Phase transformation with partial retaining of the amorphous phase after thermal treatment

Hardness

- Minimum hardness guaranteed : 1150
 +-50 HV (100 g load) on all coated surfaces
- Uniformity of coating
- Uniform distribution of sub-micron silicon carbide particles



Bond strength and heat resistance

- Preliminary results: over 370 MPa
- Thermal resistance from -200 °C up to 850 °C
- Adaptation to all base material deformation subject to thermal expansion

Bonding test according to ASTM B571 PAR 3

Wear resistance

Coating or base material

Taber wear index per 1000 cycles (104mils3)

K-EL 850°	1.159
HVOF Tungsten Carbide	> 1.44**
Electroplated Hard Chromium	4.699
Tool steel hardened RC 62	12.815

Taber test results of K-EL 850® compared to alternative surface treatments and a hardened tool steel

** Henke et al., Wear 256 (2004) 81-87

IVS 2017 • 2nd International Conference on Valve and Flow Control Technologies May, 24th and 25th 2017

Corrosion resistance

- High resistance to corrosion thanks to ENP matrix and a multi-layer composite solution with no porosity:
 - Underlayer of nickel
 - Overcoating with sub micron silicon carbides
 - High performance in neutral, acetic and higroscopic chamber also in sour environment

K-EL 850®

Ferroxyl test results

K-EL 850[®] for valve trims

- ✓ Application time
- \checkmark High quality standards and proven process
- ✓ Temperature ranging from cryogenic up to 850°C
- ✓ Uniform application
- \checkmark Reduced components wear
- ✓ Reduce friction
- ✓ Reduce lead time

Immersion process of K-EL 850®

Application testing phase at Schuck's facility

Practical case study: comparative test between two 24" Schuck's trims coated with TCC and K-EL 850[®] aiming at measuring the Break to Open and Running torque of the two alternatives.

Description of the kit used

- 2 state of the art simple piston effect kits of 24" metal to metal class
 900 with a base material of carbon steel ASTM A694 F60
- 1 kit coated with Tungsten carbide lapped after grinding
- 1 kit coated with 50µ K-EL 850[®] lapped before K-EL 850[®]
- Same valve and same conditions (water, temperature, operators...)

Protocol of test

- Pre-bubble test:
 - Procedure: According to ASTM E515 11 with alcohol and a 6 bar pressure
- API 6D :
 - Hydrostatic shell test :235 bar
 - Hydrostatic upstream seat test : 160 bar
 - Hydrostatic downstream seat test :160 bar
 - Double block: 150 bar
 - Hydrostatic body cavity relief test : 15 bar
 - Gas low-pressure seat test each side 6 bar
 - Gas low-pressure seat test each side 0.5 bar
- Endurance test: cycles of Opening/closing with torque measurement
 - 10 open/close cycles upstream –160 bar/water
 - 10 open/close cycles downstream 160 bar/water
- Post-bubble test
 - Procedure: According to ASTM E515 11 with alcohol and a 6 bar pressure
- Visual inspection

Sealing performance during high pressure opening/closi

- Identical results for both kits:
 - No leaks according to ISO 5208 rate D with the bubbles unit of leakage rate
 - No leak at high pressure with water (160 bar)
 - No leak at low pressure with air (6 bar)
 - No leak at very low pressure with air (0.5 bar)
 - Bubble test after endurance test according to ASTM E515 11 with alcohol and a 6 bar pressure

K-El 850[®] coated seat after endurance test

Tungsten Carbide coated seat after endurance test

Torque measurements

K-EL 850[®] torque: max variation of $\pm 7\%$ K-EL 850[®] coated valve maintain its initial properties over time

Torque measurements

First stroke measured torque: 33% lower with K-EL 850[®] than with TCC After 20 cycles: torque value of K-EL 850[®] coated kit is half the TCC's

Conclusion

- K-EL 850[®] is already a viable and used alternative to HVOF type of applications, providing several benefits:
 - ✓ Reduced wear
 - ✓ Reduced friction
 - ✓ Wide temperature range
 - Corrosion protection
 - Reduced lead time
- Extensive lab and valve test are currently on going to further assess and measure the full potentiality of this innovative coating.