Comparative performance analysis of an electric actuator for control valves

<u>Riccardo Bacci di Capaci</u>^a Claudio Scali^a Evaldo Bartaloni^b

^a Department of Civil and Industrial Engineering, CPCLab - Chemical Process Control Laboratory, University of Pisa, Italy *riccardo.bacci@ing.unipi.it* ^b CLUI AS, Via Magona, 57023 Cecina (LI), Italy

CLUI Automazione e Strumentazione

Experimentation on a Pilot Plant

Analysis of the performance of electric actuator for control valve

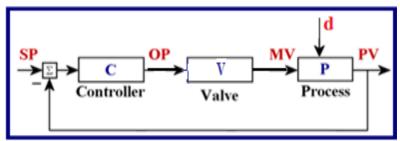
- within the collaboration between University of Pisa and CLUI AS
- along with the development of the last version of a software for CLPM

New electric quarter-turn actuator of <u>Rotork[®] CVA</u>: CVQ-90° - 1200

Fotork Process Controls

CLUI Automazione e Strumentazione

IdroLab: a pilot plant owned by ENEL located at Livorno until the end of 2016


Outline

- Introduction:
 - Control Loop Performance Monitoring
 - □ Standard diagnosis vs. Advanced diagnosis
- Background:
 - Electric actuators vs. Pneumatic actuators
 - □ Malfunctions (friction) in control valves
 - □ Modeling a control valve
- Experimentation on the pilot plant:
 - Nominal conditions
 - Fault conditions
- Comparison between electric and pneumatic actuator:
 - □ Tests in open-loop & closed-loop mode
 - Performance analysis & dynamics identification
- Conclusions and further activities

Control Loop Performance Monitoring (CLPM)

Base Controller (PID): Feedback action

SP: set point
OP: controller output
MV: valve position
 (~ flow rate)
PV: controlled variable

Importance of Monitoring:

- Product quality
- Material and Energy savings
- Plant profit

Industrial relevant problems:

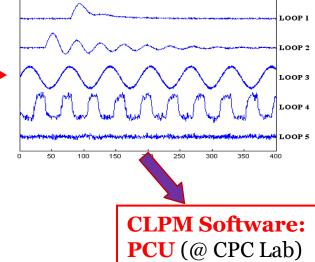
- High number of control loops
- Frequent anomalies and variables oscillations

Sources of Malfunction:

- a) Incorrect tuning
- b) Valve anomalies (*friction*):
- c) External perturbations
- d) Variables interactions

Specific Correction:

b)

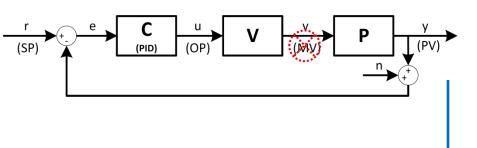

- a) Controller Retuning
 - Valve Maintenance
- c) Upstream Corrections

Objective of Monitoring:

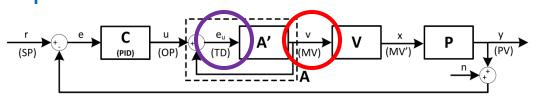
• Suggesting ways of correction

• Diagnosing sources of malfunction

d) MIMO Controller



Standard Diagnosis vs. Advanced Diagnosis

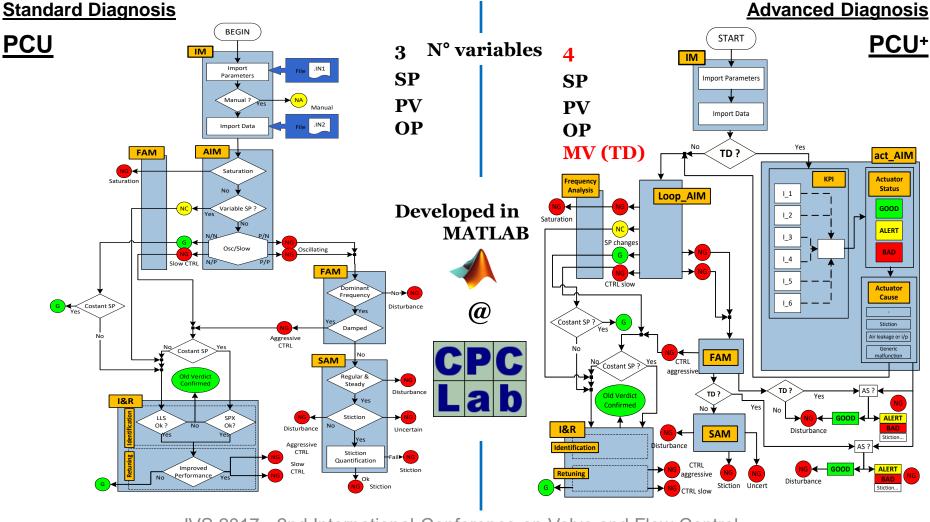

Standard Diagnosis

- > For traditional industrial plants (e.g., petrochemical)
- > Only 3 variables (measurements) available:
 - Set Point (SP)
 - Controlled Variable (PV)
 - Controller Output (OP)
- Valve Position (MV) is <u>not</u> available
- Signals transmitted in 4-20 mA current

Advanced Diagnosis

- In new-design plants (e.g., power)
- Use of intelligent instrumentation and smart valves
- Adoption of field bus communication
- > Additional variables to acquire and analyze:
 - MV (Valve Position), TD (position error)

MV allows better diagnosis of loop and valve problems:


- stiction (static-friction) most common cause of degradation
- related problems: dead band, hysteresis, backslash
- other faults for <u>pneumatic valves</u>:

changes in spring elasticity, membrane wear or rupture, leakage in the air supply system, I/P malfunction

CLPM software: PCU systems

Installed in ENI, ENEL, CLUI More than 1200 loops monitored ...

Pneumatic vs. Electric Control Valve actuators

Pneumatic

- Still most commonly used in the process industry:
 - simple technology
 - good performance
 - fast response

Electric

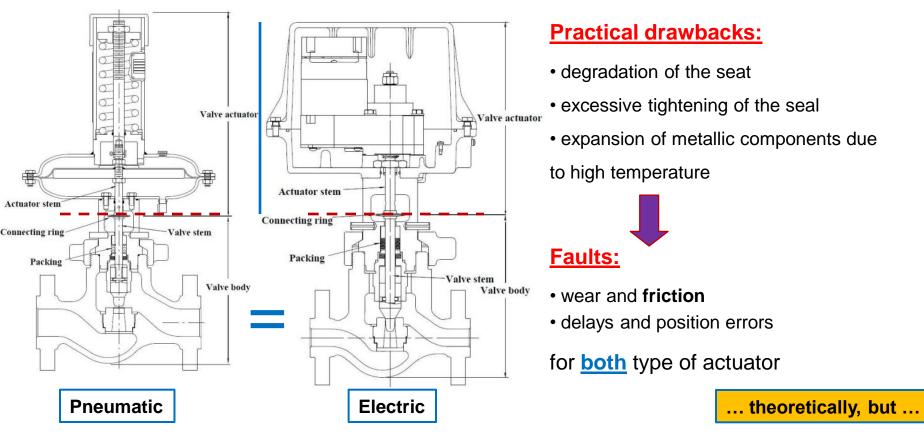
- Enhanced features
- Increasing applications in the area of process control
- Anyway, not yet suitable for all situations

[13] U. Cé, Valvole e attuatori per l'industria di processo: l'indagine di Cogent sul mercato di valvole e attuatori, Automazione e Strumentazione 8, Nov–Dec (2016) 38–39.

Electric actuators

Advantages:

- Flexibility of their embedded control systems:
- easy location of various devices within the actuator
- wide range of interfaces available^[14].



- can eliminate many problems of compressed air as a power medium;
- ideal for many situations, in particular, where
 users experienced problems with:
 - air hoses: freezing, humidity, and dust
 - frequent maintenance
 - lack of control precision, stick-slip behavior ^[15].

[14] R. D. Oaks, Valve Magazine 18 (2006) 48–54.[15] C. Warnett – Rotork Controls Limited, Documentation on-line (2010).

Malfunctions in control valve actuators

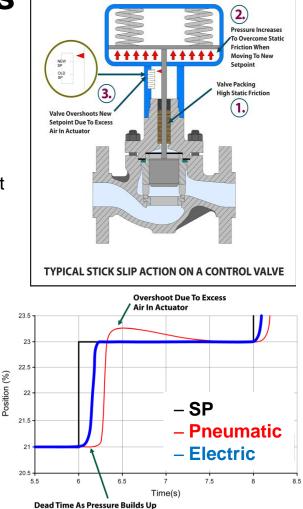
Pneumatic and Electric valves differ only in the actuation system valve body: subject to most of the friction forces, is absolutely the same ...

Friction in control valve actuators

Pneumatic control valve

- do not often have stiffness for a precise process control
- compressed air acts like a spring

Static friction (stiction)


requires an excessive amount of air pressure to initiate valve movement
 once the valve moves, stiction is replaced by dynamic friction, which is invariably lower

- □ resistance to the excessive air pressure drops abruptly
- □ the valve overpasses the desired set-point, and a correction is needed
- □ <u>oscillations</u> around the set-point and then <u>limit cycles</u> occur

Electric control valve

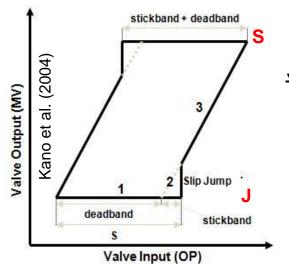
- intrinsically <u>less subject</u> to friction phenomena
- no overshoot to due excessive air
- higher stiffness and controllability due to:
 - modern electric drive trains
 - sophisticated dual sensor technology ^[15]

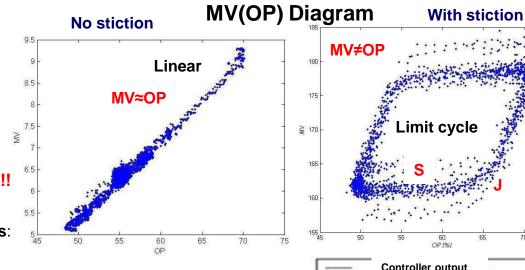
[15] C. Warnett – Rotork Controls Limited, Documentation on-line (2010).

GRAPHIC DESCRIPTION OF STICK SLIP ACTION

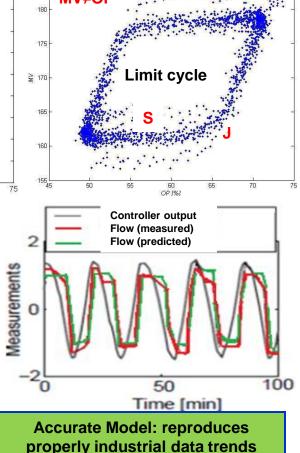
IVS 2017 • 2nd International Conference on Valve and Flow Control Technologies May, 24th and 25th 2017

... practically !!!



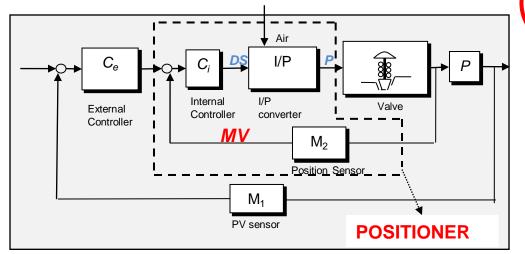

Modeling a pneumatic control valve with friction

OP: controller output
PV: controlled variable
MV: valve position
→ flow trough valve
Normally not available !!!


Kano model: data-driven with 2 parameters:

Signature of a sticky valve:

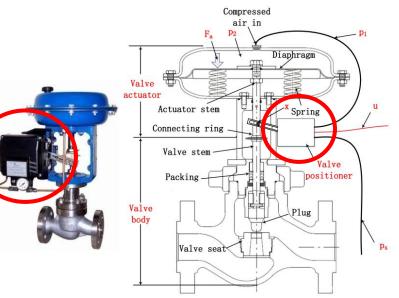
 Block: MV is steady; valve does not move, owing to static friction
 Jump: MV changes abruptly; the active force unblocks the valve
 Motion: MV changes gradually.



Smart pneumatic valves

Positioner: additional device which operates as an

internal cascade element to control valve position



MV: valve position

DS: electric signal generated by internal controller *Ci*

P: pressure signal on valve membrane by I/P converter

Objectives

- Force the correct position of valve stem
- Improve actuator performance speed up response, linearity, reduce hysteresis and deadband
- Modify characteristic curve of valve
- Improve performance in the presence of static friction

NB: ... but does NOT completely remove valve malfunctions

Experimentation on a Pilot Plant

Analyisis of the performance of electric actuator for control valve

- within the collaboration between University of Pisa and CLUI AS
- along with the development of the last version of software PCU

New electric quarter-turn actuator of <u>Rotork[®] CVA</u>: CVQ-90° - 1200

>Experimentation on the pilot plant:

Nominal conditions

Fault conditions

Comparison between electric and pneumatic actuator:

□ Tests in open-loop & closed-loop mode

Performance analysis & dynamics identification

CLUI Automazione e Strumentazione

IdroLab: a pilot plant owned by ENEL located at Livorno until the end of 2016

Rotork[®] CVA: CVQ-90° - 1200

Electric control valve actuator

- installed on a rotary valve with butterfly shutter
- equipped with several advanced features [16]:
 - Dual Sensor™ system two independent position sensors,
 minimizing backlash and positional errors
 - Brushless DC motor a highly reliable brushless motor,
 allowing full continuous unrestricted modulation duty S9
 - *Gear train* simple and durable high efficiency system,
 lubricated for life, and designed for arduous control valve duties
 - Double-sealing to IP68, providing protection in the most demanding environments.

help achieve a highly reliable performance

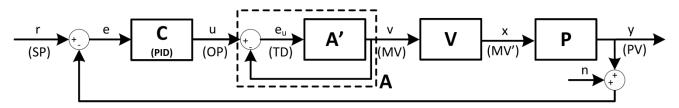
[16] Rotork Controls Limited, CVA Range - Linear and Quarter-turn actuators to automate control valves, Documentation on-line (2008 – 2011).

The control loop

FC: flow control loop

 \succ control action (OP)

> P ≈ V


controlled variable (PV) water flow rate (l/s) through the valve

output signal (0-100%) from controller **C** with PI algorithm

➤ actuator position (MV)

process dynamics \approx value dynamics : value opening vs. flow rate

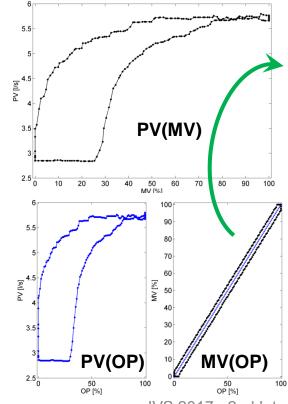
measured and controlled with a resolution of 0.1%

Dual Sensor™ system of Rotork®

□ two independent position sensors: 12-bit rotary magnetic encoders

 $\hfill\square$ one on the motor output, one near the output shaft of the actuator ${\bf A}$

 $\hfill\square$ helps eliminate backlash and inertia effects in the gearing


 $\hfill\square$ enables to measure and control *indirectly* the valve opening

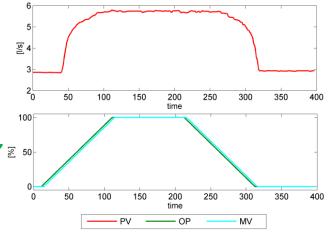
MV' position of valve shutter V - that is, the actual valve opening, is not measurable

Preliminary tests: nominal conditions

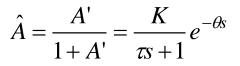
- external PI controller
- required actuator position (OP)
- actual actuator position (MV)
- flow rate (PV)

excluded, in manual imposed registered registered

Relationship OP vs. MV perfectly <u>linear</u> throughout all the operating range absence of malfunctions (i.e., nonlinearity) are confirmed


 Actuator dynamics

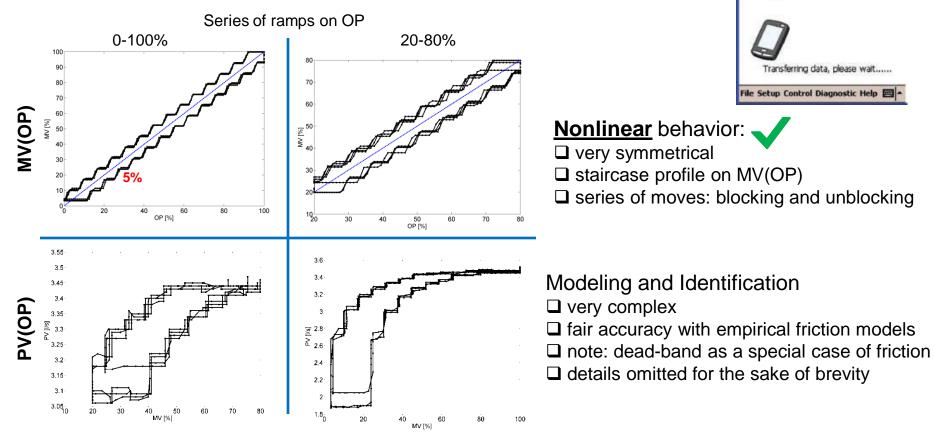
 Identified FOPTD models


 Test
 \hat{A} $F_{MV}[\%]$

 1
 $\frac{1.0002}{0.570s+1}e^{-1s}$ 98.02

 2
 $\frac{0.9983}{0.698s+1}e^{-1s}$ 97.63

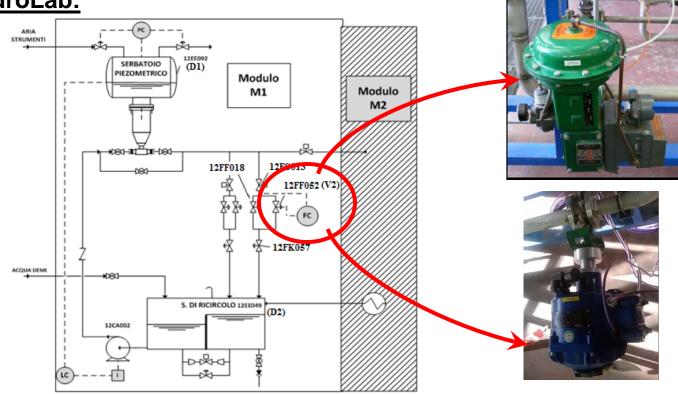
OP: series of ramps 0-100%


Two comparable tests
□ similar parameters
□ very fast dynamics
□ very good data fitting (≈ 100%)

Preliminary tests: presence of dead-band

Malfunction is introduced on purpose: dead-band d = 5%

changing setting parameter in the configuration software of the actuator


IVS 2017 • 2nd International Conference on Valve and Flow Control Technologies May, 24th and 25th 2017

Pocket Enlight

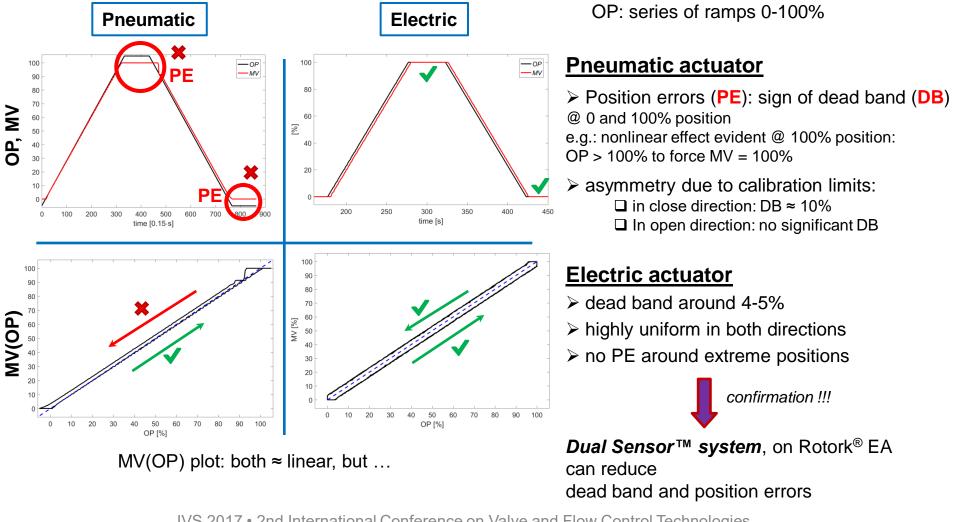
Comparison between Pneumatic and Electric Actuator

IdroLab:

1. Pneumatic Fisher Rosemount[®] DVC5020f model

2. Electric Rotork[®] class CVA type CVQ-90° model 1200

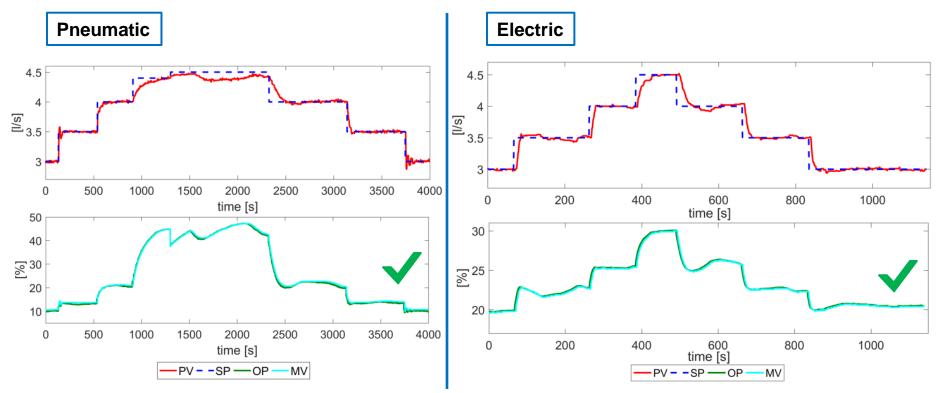
Fair comparison:


- ➤ same control valve
- ➤ same control loop
- same operation conditions

2 Types of tests: □ open-loop mode □ closed-loop mode

- 2 Types of analysis:
- Performance via PCU⁺
- dynamics identification

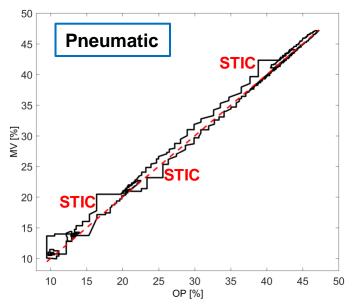
Tests in Open-loop Mode



Tests in Closed-loop Mode

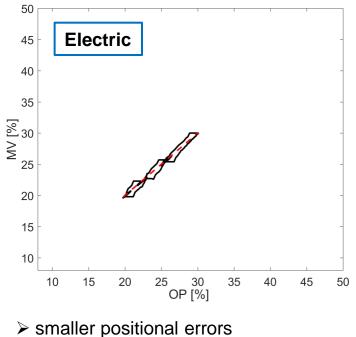
Time trends

Very similar sequence of stepwise changes imposed to the reference signal (set-point, SP)



good performance in set-point tracking are possible for both actuator, but ...

Tests in Closed-loop Mode


MV(OP) plots

some deviations from ideal behavior
presence of positional errors PE

- segments of deadband (horizontal)
 segments of friction (vertical): STIC
- Iarger intervals of variation for OP and MV *: 10-45%

* Also due to different controller tuning

- □ little segments of deadband
 - no segments of friction
- smaller interval of variation of the position: 20-30% *

Both are good, But Electric is even better ...

Performance Analysis via PCU⁺

Performance: evaluated and compared with the advanced version of PCU software (PCU+)

Six key performance indicators (KPI) based on

simple metrics of the valve positional error, *Travel Deviation*, **TD** = **MV** – **OP**:

- > I_1, Significant Oscillation Index: number of times in which a band of acceptability TDlim is exceeded (normalized to 1 h).
- > I_2, Percent Time Out: percentage of time when TD is outside the band of acceptability (TD_lim = ± 2)
- > I_3, *Mean Travel Deviation*: average value of TD signal
- > I_4, Integral Travel Deviation: integral of TD signal (normalized to 1 hour).
- > I_5, Absolute Integral Deviation Travel: integral of absolute value of TD (normalized to 1 hour).

▶ I_6, Blockage Index: number of movements of blocking and unblocking of the valve, by excluding peaks due to changes of set-point (normalized to 1 hour).

KPI allow:
> quantitative assessment of different valve behaviors
> distinction between nominal and fault cases

Analysis via PCU⁺

Results of perfomance

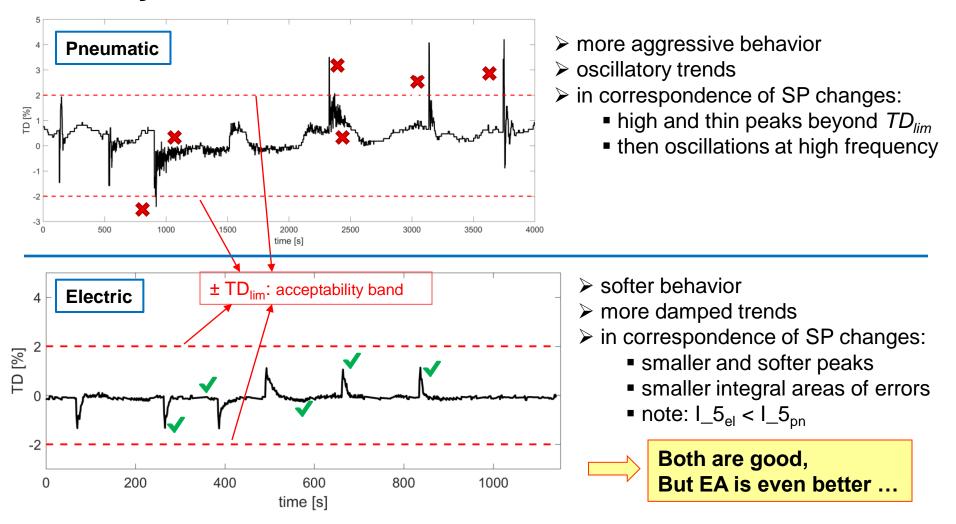
In	dex	Pneumatic Actuator (PA)	Electric Actuator (EA)	
Globa	I Verdict	GOOD	GOOD 💙	
I_1	Value	0.0	0.0	
	Status	GOOD	GOOD	
I_2	Value	0.5249	0.0	
	Status	GOOD	GOOD	
I_3	Value	0.344	-0.098	
	Status	GOOD	GOOD	
I_4	Value	1237.4	-353.8	
	Status	GOOD	GOOD	
I_5	Value	1670.7	521.4	
	Status	GOOD	GOOD	
I_6	Value	2.70	0.0	
	Status	GOOD	GOOD	

In both cases:

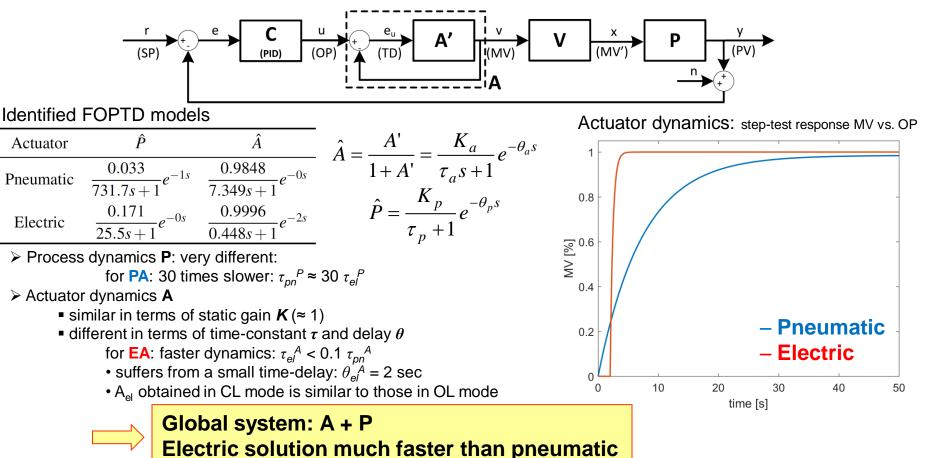
all KPI indices are below the respective threshold values

none malfunction is identified

PCU system emits a correct verdict: GOOD that is, normal operation


- TD inside the acceptable band: TDlim = ± 2
- no significant trespassing of the band: I_1 = 0
- time period TD outside the band is negligible: $I_2 < 0.6\%$
- average value of TD close to zero: $I_3 \approx 0\%$, in particular for the **EA**
- \bullet integrals of errors on TD are limited: I_4 and I_5 are low
- number of movements of locking and unlocking (I_6) is low:

in particular, zero for the EA


Analysis via PCU⁺: positional error TD

Identification of Actuator Dynamics

- Linear models for the dynamics of the control loops
- > Absence of malfunctions (NL) has been verified

Conclusions

> A comparative analysis between pneumatic and electric actuator has been performed.

> Data collected in open-loop and closed-loop operation has been employed.

Performance of electric actuator are fully <u>comparable</u> - <u>or superior</u> - to those of the pneumatic actuator:

- performance indices of PCU⁺ assume similar values;
- time trends of positional error (TD, travel deviation) are comparable;
- Imit cycles on the polar diagram MV(OP) are close.

➤ The presence of several advanced features in the electric actuator of Rotork[®] helps achieve a reliable performance:

■ *Dual Sensor*[™] system, with two independent position sensors, can minimize backlash and positional errors;

• **confirmation** are obtained from results of experimental tests in OL and CL.

Actual version of PCU proves to be a valuable tool for the performance analysis of basic control loops <u>also with electric actuator</u>.

➤ NB: PCU and in particular logic of verdicts emission and threshold values of the KPI, were calibrated for valves with pneumatic actuator and positioner.

Future Research

- > A critical re-analysis of PCU:
 - verify verdicts obtained from <u>different types</u> of electric actuators;
 - possible revision of assessment logics and recalibration of threshold values.
- Development of a *dedicated* version of the program (PCU⁺⁺), with logics of recognition of the specific malfunction of <u>electric actuators</u>:
 - diagnosing problems such as overheating and mechanical stresses;
 - monitoring variables such as *temperature* and *torque* of the electric motor.

All possible by carrying out new experiments on the pilot plant IdroLab: now moved to Cecina (Livorno), by CLUI AS at CPTM (Consorzio Polo Tecnologico Magona).

Thanks for your attention **!!!**

References

- [1] B. Huang, S. Shah, Performance Assessment of Control Loops: Theory and Applications, Springer-Verlag, 1999.
- [2] M. Jelali, Control Performance Management in Industrial Automation: Assessment, Diagnosis and Improvement of Control Loop Performance, Springer-Verlag, 2013.
- [3] M. Jelali, B. Huang, Detection and Diagnosis of Stiction in Control Loops: State of the Art and Advanced Methods, Springer-Verlag, London, 2010.
- [4] R. Bacci di Capaci, C. Scali, D. Pestonesi, E. Bartaloni, Advanced diagnosis of control loops: Experimentation on pilot plant and validation on industrial scale, in: Proceedings of 10th IFAC DYCOPS, Mumbai, India, 18–20 December, 2013, pp. 589–594.
- [5] C. Scali, M. Farnesi, Implementation, parameters calibration and field validation of a closed loop performance monitoring system, Annu. Rev. Control 34 (2010) 263–276.
- [6] R. Bacci di Capaci, C. Scali, A performance monitoring tool to quantify valve stiction in control loops, in: Proceedings of the 19th IFAC WC, Cape Town, South Africa, 24–29 August, 2014, pp. 6710–6716.
- [7] R. Bacci di Capaci, C. Scali, Process control performance evaluation in the case of variable set-point with experimental applications, accepted for publication in The Canadian Journal of Chemical Engineering (2017).
- [8] M. Kano, M. Hiroshi, H. Kugemoto, K. Shimizu, Practical model and detection algorithm for valve stiction, in: Proceedings of 7th IFAC DYCOPS, Boston, USA, 5–7 July, 2004, paper ID n. 54.

References

- [9] Q. P. He, J. Wang, M. Pottmann, S. Qin, A curve fitting method for detecting valve stiction in oscillating control loops, Industrial & Engineering Chemistry Research 46 (2007) 4549–4560.
- [10] R. Bacci di Capaci, C. Scali, Stiction quantification: A robust methodology for valve monitoring and maintenance scheduling, Ind. Eng. Chem. Res. 53 (2014) 7507–7516.
- [11] R. Bacci di Capaci, C. Scali, G. Pannocchia, Identification techniques for stiction quantification in the presence of nonstationary disturbances, in: Proceedings of 9th IFAC ADCHEM, Whistler, BC, Canada, 7–10 June, 2015, pp. 629–634.
- [12] R. Bacci di Capaci, C. Scali, G. Pannocchia, System identification applied to stiction quantification in industrial control loops: A comparative study, Journal of Process Control 46 (2016) 11–23.
- [13] U. Cé, Valvole e attuatori per l'industria di processo: l'indagine di Cogent sul mercato di valvole e attuatori, Automazione e Strumentazione 8, Nov–Dec (2016) 38–39.
- [14] R. D. Oaks, Fundamentals of electric actuator control: A view of the electrical functions of a motor actuator, Valve Magazine 18 (2006) 48–54.
- [15] C. Warnett Rotork Controls Limited, How electric control valve actuators can eliminate the problems of compressed air as a power medium, Documentation on-line (2010).
- [16] Rotork Controls Limited, CVA Range Linear and Quarter-turn actuators to automate control valves, Documentation on-line (2008 – 2011).

Extra: Analysis via PCU⁺

Actuator indices: threshold values and corresponding malfunctions

Index	Alert Level	Bad Level	Detectable Malfunction	NB: KPI and threshold are general,	
I_1	5	10	Stiction & Leakage & I/P Malfunction	but faults were conceived for pneumatic actuators !!!	
l_2	3	6	Stiction OR (Leakage & I/P Malfunction)	3 causes of valve malfunction	
I_3	±1	±2	Stiction OR (Leakage & I/P Malfunction)	can be diagnosed: <u>Stiction</u> : without any doubt	
I_4	±3000	±6000	Leakage & I/P Malfunction	Air leakage or I/P malfunction: both together	
I_5	3000	6000	Leakage & I/P Malfunction	 <u>Generic Malfunction</u>: includes all causes not directly recognizable, but responsible for actuator fault. 	
I_6	5	12	Stiction		