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Analysis of the performance of electric actuator for control valve 

• within the collaboration between University of Pisa and CLUI AS 

• along with the development of the last version of a software for CLPM 

New electric quarter-turn actuator  

of Rotork® CVA: CVQ-90° - 1200 

IdroLab: a pilot plant owned by ENEL 

 located at Livorno until the end of 2016 
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SP:    set point 
OP:   controller output 
MV:  valve position 
         (~ flow rate) 
PV:   controlled variable 

Base Controller 
(PID): 
Feedback action 

Importance of Monitoring: 
• Product quality 
• Material and Energy savings 
• Plant profit 

Industrial relevant problems: 
• High number of control loops 
• Frequent anomalies and variables oscillations 

Objective of Monitoring:   
• Diagnosing sources of malfunction 
• Suggesting ways of correction 

CLPM Software: 
PCU (@ CPC Lab) 

Sources of Malfunction: 
a) Incorrect tuning 
b) Valve anomalies (friction): 
c) External perturbations 
d) Variables interactions 

Specific  Correction: 
a) Controller Retuning 
b) Valve Maintenance 
c) Upstream Corrections  
d) MIMO Controller 

Control Loop Performance Monitoring (CLPM) 
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Standard Diagnosis 

 For traditional industrial plants (e.g., petrochemical) 

 Only 3 variables (measurements) available: 

• Set Point (SP) 

• Controlled Variable (PV) 

• Controller Output (OP) 

 Valve Position (MV) is not available 

 Signals transmitted in 4-20 mA current 

Advanced Diagnosis 

 In new-design plants (e.g., power) 

 Use of intelligent instrumentation and smart valves 

 Adoption of field bus communication 

 Additional variables to acquire and analyze:  

• MV (Valve Position), TD (position error) 

 MV allows better diagnosis of loop and valve 

problems: 

 stiction (static-friction)  - most common cause of degradation 

 related problems:  dead band, hysteresis, backslash 

 other faults for pneumatic valves: 

 changes in spring elasticity, membrane wear or 

rupture, leakage in the air supply system, I/P malfunction 



CLPM software: PCU systems 
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Electric 

 Enhanced features 

 Increasing applications in the 

area of process control 

 Anyway, not yet suitable for all 

situations 

 

Pneumatic 

 Still most commonly used in the 

process industry: 

• simple technology 

• good performance 

• fast response  

Total order of industrial actuators from Italian customers: 

estimated around 235 million of Euro [13]. 

• pneumatic actuators  60% of the total market  

• electric + hydraulic actuators 40%  

[13] U. Cé, Valvole e attuatori per l’industria di processo: l’indagine di Cogent sul mercato di valvole e attuatori,  

Automazione e Strumentazione 8, Nov–Dec (2016) 38–39. 
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Advantages: 

 Flexibility of their embedded control systems: 

•   easy location of various devices within the actuator 

•   wide range of interfaces available [14].  

 

 can eliminate many problems of compressed air 

as a power medium; 

 ideal for many situations, in particular, where 

users experienced problems with: 

• air hoses: freezing, humidity, and dust 

• frequent maintenance 

• lack of control precision, stick-slip behavior [15]. 

[14] R. D. Oaks, Valve Magazine 18 (2006) 48–54. 

[15] C. Warnett – Rotork Controls Limited, Documentation on-line (2010). 
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Practical drawbacks: 

• degradation of the seat 

• excessive tightening of the seal 

• expansion of metallic components due 

to high temperature 

Pneumatic and Electric valves differ only in the actuation system 

valve body: subject to most of the friction forces, is absolutely the same … 

Pneumatic Electric … theoretically, but … 

Faults: 

• wear and friction 

• delays and position errors 

for both type of actuator 

= 
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Electric control valve 

 intrinsically less subject to friction phenomena 

 no overshoot to due excessive air 

 higher stiffness and controllability due to: 

 modern electric drive trains 

 sophisticated dual sensor technology [15] 

… practically !!! 

Pneumatic control valve 

  do not often have stiffness for a precise process control 

  compressed air acts like a spring 

Static friction (stiction) 

 requires an excessive amount of air pressure to initiate valve movement 

 once the valve moves, stiction is replaced by dynamic friction, which is 

invariably lower 

 resistance to the excessive air pressure drops abruptly 

 the valve overpasses the desired set-point, and a correction is needed 

 oscillations around the set-point and then limit cycles occur 

[15] C. Warnett – Rotork Controls Limited, Documentation on-line (2010). 

 SP 

 Pneumatic 

 Electric 
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OP: controller output       

PV: controlled variable 

MV: valve position 

  flow trough valve 

Normally not available !!!  

No stiction 
With stiction 

Linear 

Limit cycle 

MV≈OP 

MV(OP) Diagram 

MV≠OP 

S 
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Accurate Model: reproduces 

properly industrial data trends 

Kano model: data-driven with 2 parameters: 

S 

J  

1. Block: MV is steady; valve does not 

move, owing to static friction 

2. Jump: MV changes abruptly;  

the active force unblocks the valve 

3. Motion: MV changes gradually. 
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Positioner: additional device which operates as an 

internal cascade element to control valve position 

Objectives 

• Force the correct position of valve stem 

• Improve actuator performance 
 speed up response, linearity,  

 reduce hysteresis and deadband 

• Modify characteristic curve of valve 

• Improve performance in the presence of 

static friction 

NB: … but does NOT completely remove valve malfunctions 

MV:  valve position 

DS: electric signal generated by 

internal controller Ci 

P: pressure signal on valve 

membrane by I/P converter 

Ce I/P 

M1 

External 

Controller 

I/P 

converter 
Valve 

Ci 

M2 

Position Sensor 

Internal 

Controller 

PV sensor 
POSITIONER 

Air 

P DS P 

MV 
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Analyisis of the performance of electric actuator for control valve 

• within the collaboration between University of Pisa and CLUI AS 

• along with the development of the last version of software PCU 

New electric quarter-turn actuator  

of Rotork® CVA: CVQ-90° - 1200 

IdroLab: a pilot plant owned by ENEL 

 located at Livorno until the end of 2016 

Experimentation on the pilot plant: 

 Nominal conditions 

 Fault conditions 

Comparison between electric and pneumatic actuator: 

 Tests in open-loop & closed-loop mode 

 Performance analysis & dynamics identification 



Rotork® CVA: CVQ-90° - 1200 

Electric control valve actuator 

 installed on a rotary valve with butterfly shutter 

 equipped with several advanced features [16]: 

o Dual Sensor™ system –  two independent position sensors, 

minimizing backlash and positional errors 

o Brushless DC motor – a highly reliable brushless motor, 

allowing full continuous unrestricted modulation duty - S9 

o Gear train – simple and durable high efficiency system, 

lubricated for life, and designed for arduous control valve duties 

o Double-sealing – to IP68, providing protection in the most 

demanding environments. 
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[16] Rotork Controls Limited,  CVA Range - Linear and Quarter-turn actuators to automate control valves,  

Documentation on-line (2008 – 2011). 

help achieve a highly reliable performance 
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FC: flow control loop 

 controlled variable (PV) water flow rate (l/s) through the valve 

 control action (OP)  output signal (0-100%) from controller C with PI algorithm 

 actuator position (MV)  measured and controlled with a resolution of 0.1% 

 P ≈ V  process dynamics ≈ valve dynamics : valve opening vs. flow rate 

Dual Sensor™ system of Rotork®  

 two independent position sensors: 12-bit rotary magnetic encoders 

 one on the motor output, one near the output shaft of the actuator A 

 helps eliminate backlash and inertia effects in the gearing 

 enables to measure and control indirectly the valve opening 

MV’ position of valve shutter V - that is, the actual valve opening, is not measurable 



Preliminary tests: nominal conditions 

 • external PI controller   excluded, in manual 

• required actuator position (OP) imposed 

• actual actuator position (MV)  registered 

• flow rate (PV)  registered 
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PV(MV) 

MV(OP) PV(OP) 

Relationship OP vs. MV  

perfectly linear  

throughout all the operating range 

absence of malfunctions 

(i.e., nonlinearity) are confirmed 

Two comparable tests 

 similar parameters 

 very fast dynamics 

 very good data fitting (≈ 100%) 

Actuator dynamics 

Identified FOPTD models 

OP: series of ramps 0-100%  
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Preliminary tests: presence of dead-band 
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Malfunction is introduced on purpose:  dead-band d = 5% 

changing setting parameter in the configuration software of the actuator 

Series of ramps on OP  

0-100%    20-80%  

M
V

(O
P

) 
P

V
(O

P
) 

Nonlinear behavior: 
 very symmetrical 

 staircase profile on MV(OP) 

 series of moves: blocking and unblocking 

Modeling and Identification 
 very complex 

 fair accuracy with empirical friction models 

 note: dead-band as a special case of friction 

 details omitted for the sake of brevity 

5% 
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1. Pneumatic 
Fisher Rosemount® 

DVC5020f model 

2. Electric 
Rotork®  

class CVA 

type CVQ-90° 

model 1200 

Fair comparison: 
 same control valve 

 same control loop 

 same operation conditions 

2 Types of tests:  
 open-loop mode 

 closed-loop mode 

2 Types of analysis: 
 Performance via PCU+ 

 dynamics identification 

IdroLab: 



Tests in Open-loop Mode 
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OP: series of ramps 0-100% 

Pneumatic actuator 

 Position errors (PE): sign of dead band (DB)  
@ 0 and 100% position 

e.g.: nonlinear effect evident @ 100% position: 

OP > 100% to force MV = 100% 

 asymmetry due to calibration limits: 
 in close direction: DB ≈ 10% 

 In open direction: no significant DB 

 

Electric actuator 

 dead band around 4-5% 

 highly uniform in both directions 

 no PE around extreme positions 

M
V

(O
P

) 

Pneumatic Electric 

MV(OP) plot: both ≈ linear, but … 
Dual Sensor™ system, on Rotork® EA 

can reduce 

dead band and position errors 

confirmation !!! 

O
P
, 
M

V
 

PE 

PE 



Tests in Closed-loop Mode 
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good performance in set-point tracking are possible for both actuator, 

but … 

Time trends 
Very similar sequence of stepwise changes imposed to the reference signal (set-point, SP)  

Pneumatic Electric 



Tests in Closed-loop Mode 
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 some deviations from ideal behavior 

 presence of positional errors PE 

 segments of deadband (horizontal) 

 segments of friction (vertical): STIC 

 larger intervals of variation for OP and MV *: 

 10-45% 

* Also due to different controller tuning 

Pneumatic Electric 

MV(OP) plots 

 smaller positional errors 

 little segments of deadband 

 no segments of friction 

 smaller interval of variation of the position: 20-30% * 

STIC 

STIC 

STIC 

Both are good, 

But Electric is even better … 
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Performance: evaluated and compared with the advanced version of PCU software (PCU+) 

Six key performance indicators (KPI) based on 

simple metrics of the valve positional error, Travel Deviation, TD = MV – OP: 

 I_1, Significant Oscillation Index: number of times in which a band of acceptability TDlim is exceeded (normalized to 1 h). 

 I_2, Percent Time Out: percentage of time when TD is outside the band of acceptability (TD_lim = ± 2) 

 I_3, Mean Travel Deviation: average value of TD signal 

 I_4, Integral Travel Deviation: integral of TD signal (normalized to 1 hour). 

 I_5, Absolute Integral Deviation Travel: integral of absolute value of TD (normalized to 1 hour). 

 I_6, Blockage Index: number of movements of blocking and unblocking of the valve, by excluding peaks due to changes of 

set-point (normalized to 1 hour). 

KPI allow: 

 quantitative assessment of different valve behaviors 

 distinction between nominal and fault cases  
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Index 

Pneumatic 

Actuator 

(PA) 

Electric 

Actuator 

 (EA) 

Global Verdict GOOD GOOD 

I_1 
Value 0.0 0.0 

Status GOOD GOOD 

I_2 
Value 0.5249 0.0 

Status GOOD GOOD 

I_3 
Value 0.344 -0.098 

Status GOOD GOOD 

I_4 
Value 1237.4 -353.8 

Status GOOD GOOD 

I_5 
Value 1670.7 521.4 

Status GOOD GOOD 

I_6 
Value 2.70 0.0 

Status GOOD GOOD 

Analysis via PCU+  

In both cases: 

 all KPI indices are below the respective 

threshold values 

 none malfunction is identified 

 PCU system emits a correct verdict: GOOD 

that is, normal operation 

• TD inside the acceptable band: TDlim = ±2 

• no significant trespassing of the band: I_1 = 0 

• time period TD outside the band is negligible:  I_2 < 0.6% 

• average value of TD close to zero: I_3 ≈ 0%, 

in particular for the EA 

• integrals of errors on TD are limited: I_4 and I_5 are low 

• number of movements of locking and unlocking (I_6) is low: 

in particular, zero for the EA 

Results of perfomance 

Both are good, 

But EA is even better … 



0
0 

IVS 2017 • 2nd International Conference on Valve and Flow Control Technologies 

May, 24th and 25th 2017 
24 

Analysis via PCU+ : positional error TD 

 more aggressive behavior 

 oscillatory trends 

 in correspondence of SP changes: 

 high and thin peaks beyond TDlim 

 then oscillations at high frequency 

Pneumatic 

Electric ± TDlim: acceptability band  softer behavior 

 more damped trends 

 in correspondence of SP changes: 

 smaller and softer peaks 

 smaller integral areas of errors 

 note: I_5el < I_5pn 

Both are good, 

But EA is even better … 



Identification of Actuator Dynamics 
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 Linear models for the dynamics of the control loops 

 Absence of malfunctions (NL) has been verified 

 Process dynamics P: very different: 

 for PA: 30 times slower: τpn
P ≈ 30 τel

P  

 Actuator dynamics A 

 similar in terms of static gain K (≈ 1) 

 different in terms of time-constant τ and delay θ 

for EA: faster dynamics: τel
A < 0.1 τpn

A  

• suffers from a small time-delay: θel
A = 2 sec 

• Ael obtained in CL mode is similar to those in OL mode 

Identified FOPTD models 
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 Pneumatic 

 Electric 

Actuator dynamics: step-test response MV vs. OP 

Global system: A + P 

Electric solution much faster than pneumatic 
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 A comparative analysis between pneumatic and electric actuator has been performed. 

 Data collected in open-loop and closed-loop operation has been employed. 

 Performance of electric actuator are fully comparable - or superior - to those of the 

pneumatic actuator: 

 performance indices of PCU+ assume similar values; 

 time trends of positional error (TD, travel deviation) are comparable; 

 limit cycles on the polar diagram MV(OP) are close. 

 The presence of several advanced features in the electric actuator of Rotork® helps 

achieve a reliable performance: 

 Dual Sensor™ system, with two independent position sensors, can minimize backlash 

and positional errors; 

 confirmation are obtained from results of experimental tests in OL and CL. 

 Actual version of PCU proves to be a valuable tool for the performance analysis of basic 

control loops also with electric actuator. 

 NB: PCU and in particular logic of verdicts emission and threshold values of the KPI, were 

calibrated for valves with pneumatic actuator and positioner. 
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 A critical re-analysis of PCU: 

• verify verdicts obtained from different types of electric actuators; 

• possible revision of assessment logics and recalibration of threshold values. 

 Development of a dedicated version of the program (PCU++), with logics of recognition of 

the specific malfunction of electric actuators: 

• diagnosing problems such as overheating and mechanical stresses; 

• monitoring variables such as temperature and torque of the electric motor. 

 All possible by carrying out new experiments on the pilot plant IdroLab: now moved to 

Cecina (Livorno), by CLUI AS at CPTM (Consorzio Polo Tecnologico Magona). 
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Thanks for your attention !!! 
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Extra: Analysis via PCU+ 
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Index 
Alert  

Level 

Bad  

Level 
Detectable Malfunction 

I_1 5 10 Stiction & Leakage & I/P Malfunction 

I_2 3 6 
Stiction OR  

(Leakage & I/P Malfunction) 

I_3 ±1 ±2 
Stiction OR  

(Leakage & I/P Malfunction) 

I_4 ±3000 ±6000 Leakage & I/P Malfunction 

I_5 3000 6000 Leakage & I/P Malfunction 

I_6 5 12 Stiction 

3 causes of valve malfunction  

can be diagnosed: 

 Stiction: without any doubt 

 Air leakage or I/P malfunction: both 

together 

 Generic Malfunction: includes all 

causes not directly recognizable, but 

responsible for actuator fault. 

Actuator indices: threshold values and corresponding malfunctions 

NB: 

KPI and threshold are general, 

but faults were conceived for 

pneumatic actuators !!! 


