

IVS 2019 - Industrial Valve Summit Conference Bergamo (Italy) - May 22/23, 2019

How will AM influence valve design and manufacturing?

Per Wennersten Managing Director Ramén Valves AB, Sweden

Manufacturing principles

Casting

Subtractive manufacturing

Additive Manufacturing = 3D printing

The process of producing parts by successive melting of layers of material rather than removing material. Each layer is melted to the exact geometry defined by a 3D computer model

3D Printing – A wide range of AM technologies

Electron Beam Melting (EBM)

- Titanium gr 2
- GE ARCAM

Vacuum process Hot process (650°C)

Selective Laser Melting (SLM)

- Stainless steel 316L
- SLM SOLUTIONS

Process Time

3-5 days depending on geometry and height

Commercially available metals for AM

- > Titanium gr. 2
 Commercial Pure Titanium
- > Titanium gr. 5 Ti 6AI-4V
- > Titanium gr. 23 Ti 6AL-4V ELI
- > Cobalt Chrome CoCr
- > Inconel 718 EN 2.4668
- > Stainless Steel 316L

Material Strength for AM produced titanium parts

	Arcam Ti6Al4V, Typical	Ti6Al4V, Required **	Ti6Al4V, Required ***			
Yield Strength (Rp 0,2)	950 MPa	758 MPa	860 MPa			
Ultimate Tensile Strength (Rm)	1020 MPa	860 MPa	930 MPa			
Elongation	14%	>8%	>10%			
Reduction of Area	40%	>14%	>25%			
Fatigue strength* @ 600 MPa	>10,000,000 cycles					
Rockwell Hardness	33 HRC					
Modulus of Elasticity	120 GPa					

*After Hot Isostatic Pressing **ASTM F1108 (cast material) ***ASTM F1472 (wrought material)

The mechanical properties of materials produced in the EBM process are comparable to wrought annealed materials and are better than cast materials.

Mechanical properties of selective laser melted stainless steel 316L

Condition	Build direction		Yield Strength [MPa]		Ultimate Tensile Strength [MPa]	Elongatior [%])	Charpy Impact Energy [J]
ENGIE Selective Laser Melted 316L (As-built)	Vertical		508 🗸	634 🗸		39 🗸		94 ✓ SD=7
			Vertical		508 🗸	()	e	50-7
	45°	513			SD = 10	2		100 SD=8
	Horizontal	451	45°		513 V 5D = 7		e	105 SD=11
ENGIE Selective Laser Melted 316L (Annealed) ASTM F2184-16 Stress relieved or vacuum annealed	Vertical	348 🗸						121 ✓ SD=6
	459	255	Horizontal		451 🗸		5	122 (
	45	355 1			SD =15			SD=13
	Horizontal	343	Vertical	Vertical	348√ s∩=8	0	5	127√ SD=9
	/							Not mentioned in the ASTM F2184-16
EN 10088-3:2015* Semi-finished products, bars, rods, wire, sections and bright products – 1.4404 (316L)	1		45°		355 🗸			Min. 100
					50=2		2	
EN 10216-5:2013* Seamless steel tubes for pressure purposes – 1.4404 (316L)	1		Horizontal		343 🗸		nal)	Min. 100 (Longitudinal)
					SD=5		5)	Min. 60 (Transversal)
ISO 22068:2012 Sintered metal injection-moulded materials – MIM-316L-140	/				205			Not mentioned in the ISO
								22000.2012
NF A 32-060:2001* Foundry products - Cast steel and nickel alloy castings for pumps, valves and fittings - GX2CrNiMo19-11-2 (1.4409)	/		Min. 195		440 - 640	Min. 30		Min. 80

Cost vs. complexity

Opportunities with adapting to AM technology

Design freedom

Short lead times

Functional surface

Customization

Cost-efficient production

Environmental footprint

Cost of capital

Speed of optimized design

- > Customization based on unique application data
- > CFD for optimized flow paths
- > Material strength requirements
- > Print on demand
- > Optimised for machining, assembly and QA
- > Spare parts printing
- > Minimized material usage
- > Optimized logistics
- > Optimized lead time

Challenges for the AM technology in the valve industry - Pressure Directive, PED 2017/68/EU

Challenges for the AM technology in the valve industry - Where are we heading?

> Where to Print

Invest in 3D printer and qualified staff Using local sub suppliers with AM Local Print houses with machining capability Print on site with the customer

> Spare parts supply and demand

Spare part printing anywhere IP protection Quality assurance

> Open up for disruptive business models

Can we have a Uber or Spotify for industrial Valves?

Thank you!

Do you have questions?

Per Wennersten Ramén Valves AB, Sweden per.wennersten@ramenvalves.com

