

IVS 2019 - Industrial Valve Summit Conference Bergamo (Italy) - May 22/23, 2019

Changing & New Codes & Standards

Paul Heald
(Vice President of Product Engineering, Specialties & China
Operations)
BONNEY FORGE

Codes and standards changes and new:

- Above all for Safety
- Interchangeable products
- Common requirements
- Testing
- Adaptation to increased service/use
- AND A LOT MORE

Global Codes & Standards

Codes and standards are under continuous change about every 5 years

Common industry codes and standards

- 1. API
- 2. ASME
- 3. ASTM
- **4. ISO**
- 5. MSS
- 6. BS
- 7. EN
- 8. DIN
- 9. Etc.

Newest IOGP Specifications Supplementary Requirements

Standards changes and developing new standards activity is ever increasing

Connectivity to standards changes and new standards must be continuous and thorough

Recognizing the significance of these changes and new standards impact in the Market place and product development is mandatory

Maintaining a high competence to meet changing and new requirements is critical

Adaptation to quickly design and manufacture is the NEW norm

Increasingly the levels of complexity to control all aspects of design and manufacturing for international compliance is increasing every few years


API Most recently published

• First time in many years new standards not currently under development

API 594 Check Valves Flanged, Lug, Wafer and Butt-welding

8th 2017

- **❖** Type B size increase to 36" (DN900)
- ❖ Type A Table 3—Face to Face Dimensions for Double Flange Valves Dimensions in mm (inches)

API 603 Corrosion-resistant, Bolted Bonnet Gate Valves-Flanged and Butt-welding Ends 9th 2018

❖ Same requirements as API 600 & 602

API RP 621 Reconditioning of Metallic Gate, Globe, and Check Valves 4th 2018

❖ Rewrite and rearranged sections and requirements updates

API 622 Type Testing of Process Valve Packing for Fugitive Emissions 3rd 2018

- ❖ 100 ppmv maximum leakage with no stem packing adjustments
- ❖ 1/8"(3.2mm) packing testing in addition to 1/4"(6.4mm)

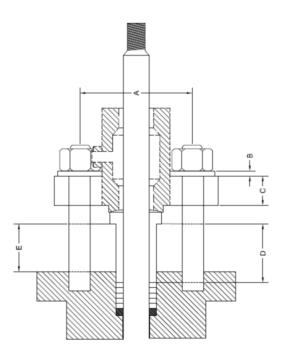


Table 2—Test Fixture Bonnet Dimensions

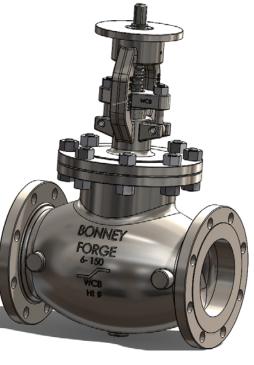
Item	¹/ଃin. Packing Fixture	¹ / ₄ in. Packing Fixture
А	48.79 mm (1.92 in.)	101.60 mm (4.00 in.)
В	3.18 mm (0.125 in.) max.	3.18 mm (0.125 in.) max.
С	25.4 mm (1.00 in.)	38.2 mm (1.50 in.)
D	50.8 mm (2.00 in.)	50.8 mm (2.00 in.)
Е	Gland height shall be measured and recorded at beginning and end of test.	Gland height shall be measured and recorded at beginning and end of test.

API RP 591 Process Valve Qualification Procedure

6th 2019

Test facility cannot have any commercial relationship with valve manufacturer or subcontracting with valve manufacturer

Carbon and alloy steels hardness and


charpy impact testing

❖ Additional valve sizes:

- a) Check 6"-150
- b) Globe 6"-150
- c) Globe 8"-150
- d) Globe 6"-300

1. API 599 Metal Plug Valves-Flanged, Threaded and Welding Ends

(7th 2013)

- ❖ API 641 Type Testing of Quarter-turn Valves for Fugitive Emissions
- API 600 Steel Gate Valves—Flanged and Butt-welding ends, Bolted Bonnets (13th 2015)
- 100 ppmv maximum leakage with no stem packing adjustments
- 3. API 602 Gate, Globe, and Check Valves for Sizes DN 100 (NPS 4) and Smaller for the Petroleum and Natural Gas Industries

(10th 2015)

- 4. API 608 Metal Ball Valves—Flanged, Threaded, and Welding Ends (5th 2012)
- ❖ API 641 Type Testing of Quarter-turn Valves for Fugitive Emissions
- API 623 Steel Globe Valves—Flanged and Butt-welding Ends, Bolted Bonnets (1st 2013)
- ❖ API 624 Type Testing of Rising Stem Valves Equipped with Graphite Packing for Fugitive Emissions
- 6. API 624 Type Testing of Rising Stem Valves Equipped with Graphite Packing for Fugitive Emissions
 (1st 2014)
- **❖** 6.2 Qualification Facility independent or 3rd party witness

ASME B16 published in 2017

- 1. B16.5 Pipe Flanges and Flanged Fittings
- ❖ No substantive changes
- 2. B16.10 Face-to-Face and End-to-End Dimensions of Valves
- **❖ Valve size increased from DN 900 (36") to DN 1800 (72")**
- 3. B16.25 Buttwelding Ends
- ❖ Size increased from DN 1200 (48") to DN 1500 (60") & Figure 1 notes revised
- 4. B16.34 Valves Flanged, Threaded, and Welding End
- **❖** Size increased from DN 1250 (50") to DN 1500 (60")
- 5. B16.47 Large Diameter Steel Flanges DN650 (26") DN1500 (60")
- **❖** No substantive changes

ASME B16 published in 2017

- 1. B16.5 Pipe Flanges and Flanged Fittings
- **❖** No substantive changes
- 2. B16.10 Face-to-Face and End-to-End Dimensions of Valves
- **❖ Valve size increased from DN 900 (36") to DN 1800 (72")**
- 3. B16.25 Buttwelding Ends
- ❖ Size increased from DN 1200 (48") to DN 1500 (60") & Figure 1 notes revised
- 4. B16.34 Valves Flanged, Threaded, and Welding End
- **❖** Size increased from DN 1250 (50") to DN 1500 (60")
- 5. B16.47 Large Diameter Steel Flanges DN650 (26") DN1500 (60")
- **❖** No substantive changes

New MSS Technical Committee C-410 Severe and Special Service Valves

(NO NEW STANDARDS PUBLISHED)

1. PN-16-20 Severe Service Valves

SCOPE

1.1 This Standard Practice is applicable to isolation valves as well as control valves.

2. PURPOSE

- 2.1 The purpose of this Standard Practice is to provide a method to categorize valves by the severity of the service conditions they will encounter in an application. The categories are to be used as a guide for specifying appropriate requirements for special design features, materials of construction, non-destructive testing, quality inspections, cleaning, painting/coating and testing relative to the service conditions the valve will encounter
- 2.2 The definition and common categorization of valves by their severity of service assists in the proper specification and selection of valves which improves process performance, increased reliability, plant safety, and environmental protection.

TABLE 1
Application Severity Checklist for Valves

Corrosivity (av Value		0	par yea	5	10					Score
Mils / year		2	1	< 20	> 20	_				acore
Microns / year		51		< 510	> 510	-				
		31		~ 510	> 510					
Velocity, Gas										_
Value		0		3	5		8		10	Score
ft. / sec.		- 80		- 165	165 - 32		325 - 400		> 400	
m / sec.	0-	- 25	25	5 – 50	50 - 100		100 - 125		> 125	
Velocity, Liquid	ı									
Value		0		3	5		8		10	Score
ft. / sec.	0-	-6	6	- 13	13 - 20		20 - 32		> 32	
m/sec.		-2		2-4	4-6		6-10		> 10	
Velocity, Slurry Value		0	_	3	5		8		10	
			<u> </u>					-		Score
ft./sec.		-3		-6	6-10	_	10 – 16		> 16	
m / sec.	0-	- 1		-2	2-3		3 – 5		> 5	
requency of O	peration									
Value		0		3	5		8		10	Score
cycles / day	<	2	2	- 14	14 - 70		70 – 700		> 700	
Process Design	Drassure									
Value		0		3	5		8		10	Score
psig		150	15/	750	750 - 250	00	2500 - 7250	_	> 7250	Score
barg		10) = 50	50 - 170		170 - 500	_	> 500	
			10	7-30	30-17		170 - 300		2 300	
Process Design										
Value		0		3	5		8		10	Score
°F		100		400	400 - 80		800 - 1 000		> 1000	
°C	<	38	38	- 200	200 – 43	0	430 - 540		> 540	
Coxicity										
Value	1 (0			5			10		Score
		toxic			tely toxic		Extrer		xie	
Reactivity Value		0			5			10		
Value						_	*** **			Score
	Not re	eactive		Mildi	eaction		Highl	y react	ive	
scalability										
Value	(0			5			10		Score
	No so	caling		Slight	scaling		High	ı scalir	ıg	
lammability										
Value		0			5			10		Score
varue	Not flan				y flammable	_	Highly		abla	acore
									and the same	
peed of Opera			for str			en-to-clo			10	
Value	0	1	_	3	5		8		10	Score
sec. / stroke	> 10	5 > 1	0	5-2	2-1		1-1/2		< 1/2	
Solids Content										
		0		3	5		8		10	Score
Value	(0	() < 5	5 < 20		20 < 50		> 50	
Value %										
%						5			10	Score
% Solids Hardnes								0335		ocore
% Solids Hardnes Value	0	tala	I mm	m coloit	n fluorite					
% Solids Hardnes: Value Mohs	0 None	tale	gypsu	m calcit	e fluorite	apatite	orthoclase	quar	tz to diamond	
% Solids Hardnes Value Mohs Multiphase Flo	0 None		gypsu			apatite	orthoclase	quar	tz to diamond	
% Solids Hardnes: Value Mohs	0 None	talc	gypsu	m calcit	e fluorite	apatite	orthoclase	quan	z to diamond	Score
% Solids Hardnes Value Mohs Multiphase Flo	0 None						orthoclase	quar	z to diamond	Score

I otal Score

New MSS Technical Committee C-410 Severe and Special Service Valves (NO NEW STANDARDS PUBLISHED ONLY DRAFT)

1. PN-16-20 Severe Service Valves

TABLE 1 Application Severity Checklist for Valves

Corrosivity (average penetration per year) Value 0 10 Score Mils / year < 2 2 < 20> 20 > 510 Microns / year < 51 51 < 510 Velocity, Gas 0 3 5 8 Value 10 Score ft. / sec. 0 - 8080 - 165165 - 325325 - 400> 400 0 - 2525 - 5050 - 100100 - 125> 125 m / sec. Velocity, Liquid Value 0 3 5 8 10 Score > 32 ft. / sec. 0 - 66 - 1313 - 2020 - 32m / sec. 0 - 22 - 44 - 66 - 10> 10 Velocity, Slurry 3 5 8 Value 0 10 Score ft. / sec. 0 - 33 - 66 - 1010 - 16> 16 m / sec. 0 - 11 - 22 - 33 - 5> 5 Frequency of Operation 5 Value 3 8 10 Score cycles / day < 2 2 - 1414 - 7070 - 700> 700

New MSS Technical Committee C-410 Severe and Special Service Valves (NO NEW STANDARDS PUBLISHED ONLY DRAFT)

1. PN-16-20 Severe Service Valves

Process	Design	Pressure
---------	--------	----------

0	3	5	8	10	Score
< 150	150 – 750	750 – 2500	2500 - 7250	> 7250	
< 10	10 – 50	50 – 170	170 – 500	> 500	
Temperature					
0	3	5	8	10	Score
< 100	100 - 400	400 – 800	800 – 1 000	> 1000	
< 38	38 – 200	200 – 430	430 – 540	> 540	
0		5	10		Score
Not toxic	Modera	tely toxic	Extremely to	oxic	
0		5	10		Score
Not reactive	Mild r	eaction	Highly react	tive	
0		5	10		Score
No scaling	Slight	scaling	High scalin	ng	
	< 150 < 10 Temperature 0 < 100 < 38 Not toxic 0 Not reactive	< 150	< 150	< 150	< 150 150 - 750 750 - 2500 2500 - 7250 > 7250 < 10

New MSS Technical Committee C-410 Severe and Special Service Valves (NO NEW STANDARDS PUBLISHED ONLY DRAFT)

1. PN-16-20 Severe Service Valves

_									
140	•	m	m	•	h	TI.	1	f٦	9
1.1	а	ш	m	а	v	ш	ш	U	r

Value	0	5	10	Score
	Not flammable	Moderately flammable	Highly flammable	

Speed of Operation (shortest time for stroke, close-to-open or open-to-close)

Value	0	1	3	5	8	10
sec. / stroke	> 10	5 > 10	5-2	2-1	1 - 1/2	< 1/2

Score

Solids Content

Some Comen	•				
Value	0	3	5	8	10
%	0	0 < 5	5 < 20	20 < 50	> 50

Score

Solids Hardness

Value	0		1		5			10
Mohs	None	talc	gypsum	calcite	fluorite	apatite	orthoclase	quartz to diamond

Score

Multiphase Flow

Value	0	8	10
	single phase	two phase	three phase

Score	

Total Score

New MSS Technical Committee C-410 Severe and Special Service Valves (NO NEW STANDARDS PUBLISHED ONLY DRAFT)

2. PN-17-19 Special High Pressure Gas Test Procedures for Valves

SECTION

Table 1 – Test Duration

1 SCOPE					
2 PURPOSE	Valve	e Size	Test and Duration (minutes)		
7 DOCUMENTATION		DN	Shell (minimum)	Closure (minimum)	
1 TEST DURATION	≤2	≤ 50	5	2	
1 BUBBLE JAR ANNEX	$2\frac{1}{2} - 6$	65 – 150	10	2	
A REFERENCED STANDARDS AND APPLICABLE DATES	8 – 12	200 – 300	15	5	
APPENDIX	≥ 14	≥ 350	20	5	
Y1 PELATIVE AND DECOMMENDED STANDARDS					

MSS ANSI Approved Valve Standards

- 1. SP-25 Standard Marking System for Valves, Fittings, Flanges, and Unions
- 2. SP-96 Terminology for Valves, Fittings, and Their Related Components
- 3. SP-122 Plastic Industrial Ball Valves
- 4. SP-134 Valves for Cryogenic Service, including Requirements for Body/Bonnet Extensions
- 5. SP-135 High Pressure Knife Gate Valves
- 6. SP-138 Quality Standard Practice for Oxygen Cleaning of Valves and Fittings
- 7. SP-144 Pressure Seal Bonnet Valves

ISO New and Revisions

ISO WG 10

Draft new standard "Type-testing of valves" 26232

New electric actuator standard draft 22153

Manual gear box standard draft 22109

- 1. 5209 General purpose industrial valves Marking
- 2. 5752 Metal valves for use in flanged pipe systems Face-to-face and centre-to-face dimensions
- 3. 6002 Bolted bonnet steel gate valves

ISO New and Revisions

- 4. 10434 Bolted bonnet steel gate valves for the petroleum, petrochemical and allied industries
- 5. 10497 Testing of valves Fire type-testing requirements
- 6. 10631 Metallic butterfly valves for general purposes
- 7. 15761 Steel gate, globe and check valves for sizes DN100 and smaller, for the petroleum and natural gas industries
- 8. 15848-1 Industrial valves Measurement, test and qualification procedures for fugitive emissions Part 1: Classification

ISO New and Revisions

9. 28921 Industrial valves – Isolating valves for low-temperature applications

AV Assembly Recommended Practice for part-turn automated onoff valves

IOGP—International Association of Oil & Gas Producers

Supplementary requirements to standards including requirements from many standards all together into 1 standard

- 1. Piping material specification (S-563)
- Chemistry, mechanical and NDE
- 2. API 6D (S-562) Specification for Pipeline and Piping Valves
- 3. API 600 & 603 (S-611) Steel Gate Valves—Flanged and Butt-welding ends, Bolted Bonnets

These standards are many pages covering a broad range of requirements. Intent appears to be similar to some end user requirements for projects.

IOGP—International Association of Oil & Gas Producers

JIP 33

- 1. End users specifications combined into one specification standardization
- 2. 2015 4 supplements
- 3. 2017 11 supplements
- 4. 2019 35 supplements

IOGP—API, ASTM, ASME, ISO, MSS

Project requirements included

Increasing requirements to existing standards must be managed concurrently

Will the replacement of customer specifications, Norsok, etc. occur?

What will be the impact in the market place?

Limited availability decreasing manufacturers meeting requirements?

Increased lead times for increased requirements?

Future stock requirements changes?

Made-to-order transition from current stock?

API 11 published and in task group standards

ASME 5 published standards

MSS 14 standards and ANSI recognized standards

ISO 13 new and in working groups standards

IOGP 35 new standards

78 standards

MANY MORE STANDARDS NOT INCLUDED HERE

Thank you!

Do you have questions?

BONNEY FORGE (US)

Paul Heald Bonney Forge pheald@bonneyforge. com

BONNEY FORGE EUROPE

BONNEY FORGE SHANGHAI

