

IVS 2019 - Industrial Valve Summit Conference Bergamo (Italy) - May 22/23, 2019

Corrosion allowance in valves: common practice and new cost-effective approach to prevent failures

Marco Sparisci Technical Manager DAFRAM SpA

Introduction

- More and more demanding conditions (corrosive fluids, new refining process, ecc) for pressure containg equipment of pipelines and plants
- Need for very accurate material selection on the basis of fluids and operating conditions
- Guarantee service suitability and cost effectiveness

Introduction

- Corrosion allowance concept (CA)
- Usually added in case of carbon steel pipeline equipment or in any case to equipment dedicated to very severe applications
- Corrosion allowance is considered trade-off between corrosion resistance and cost effectiveness

Introduction

Typical calculation procedure for equipment:

- Minimum wall thickness by Standard Code (e.g. ASME B31.3, B31.8, BPVC, etc.)
- Addition of corrosion allowance

$$t = \frac{PR}{S - 0.6P} + t_{CA}$$
 (ASME BPVC VIII div. 1

$$t = \frac{Pd_o}{2(FES_Y)} + t_{CA}$$
 (ASME B31.4)

$$t = \frac{Pd_o}{2FETS_Y} + t_{CA}$$
 (ASME B31.8)

$$t = t_{CA} + t_{th} + \left[\frac{Pd_o}{2(SE + PY)}\right] \left[\frac{100}{100 - T_{ol}}\right]$$
 (ASME B31.3)

Introduction

- Addition of corrosion allowance based on evaluation of corrosion rates to compensate the loss of material during service life:
- Expected service life
- Test results
- Literature data
- Good practice referred in similar applications

$$Corrosion Rate = V_{cor} \cdot F_{scale} \cdot F_{h2s} \cdot F_{cond} \cdot F_{oil} \cdot F_{inhib} \cdot F_{glyc}$$

Corrosion allowance in Valves

- Application of corrosion allowance to valve as piping components
- Corrosion allowance is required for pressure containing parts (Body, Closure, Bonnet, etc.)

Corrosion allowance in Valves

- Nevertheless valves present some peculiarities that must be carefully considered.
- They are not only elements designed to confine process fluid but they implement a sealing function and include moving parts.

Corrosion allowance in Valves

Overview:

Body/bonnet joints

Corrosion allowance in Valves

Overview:

- Body/bonnet joints
- Stem sealing arrangement

Corrosion allowance in Valves

Overview:

- Body/bonnet joints
- Stem sealing arrangement
- Seats movement

Corrosion allowance in Valves

Overview:

- Body/bonnet joints
- Stem sealing arrangement
- Seats movement
- Bushing housing

Corrosion allowance in Valves

Overview:

- Body/bonnet joints
- Stem sealing arrangement
- Seats movement
- Bushing housing
- Body openings

Corrosion allowance in Valves

Possible malfunctions:

Related to operating principle of seals E.g. O-rings

Corrosion allowance in Valves

Possible malfunctions:

Related to operating principle of seals E.g. O-rings

Corrosion allowance in Valves

Possible malfunctions:

Related to operating principle of seals E.g. O-rings

Corrosion allowance in Valves

Possible malfunctions:

Related to operating principle of seals E.g. O-rings

Corrosion allowance in Valves

Possible malfunctions:

- In-line leakages (ineffective seat-to-body seals)
- Leakages to the environment (ineffective body seals)

Corrosion allowance in Valves

Possible malfunctions:

• Leakages to the environment (ineffective stem seals)

Corrosion allowance in Valves

Possible malfunctions:

• Torque increase, sticking of rotating parts (e.g. ball, stem)

Corrosion allowance in Valves

• Review of technical data by Sub-Suppliers (e.g. seals, bushings, etc.)

• Specific tests by Dafram R&D

Validation of valves with dedicated solutions

Corrosion allowance in Valves

Application of corrosion allowance in valves requires additional features:

• CRA overlay on static sealing areas (body & bonnet seals)

Corrosion allowance in Valves

Application of corrosion allowance in valves requires additional features:

• CRA overlay on sealing areas (dynamic, stem seals)

Corrosion allowance in Valves

Application of corrosion allowance in valves requires additional features:

• CRA overlay on sealing areas (dynamic, seat-to-body)

Corrosion allowance in Valves

Application of corrosion allowance in valves requires additional features:

• CRA materials for body openings (e.g. drain port)

Corrosion allowance in Valves

Special features applied to Case Studies:

Case 1: Trunnion side-entry ball valve 6" class 600

- CRA SS (309L+316L)
- CRA Ni-alloy (Inc625)

	CRA Material	Overlay	Bushing housing / body ports	COST IMPACT
CS body 3mm	-	-	CS	-
1.A	309L+316L	Sealing areas	316	
1.B	Inc625	Sealing areas	625	
1.C	309L+316L	All wetted	316	
1.D	Inc625	All wetted	625	

Corrosion allowance in Valves

Special features applied to Case Studies:

Case 2: Trunnion side-entry ball valve 24" class 600

- CRA SS (309L+316L)
- CRA Ni-alloy (Inc625)

	CRA Material	Overlay	Bushing housing / body ports	COST IMPACT
CS body 3mm	-	-	CS	-
2.A	309L+316L	Sealing areas	316	
2.B	Inc625	Sealing areas	625	
2.C	309L+316L	All wetted	316	
2.D	Inc625	All wetted	625	

Corrosion allowance in Valves

Additional features applied to Case Studies: considerations

- Valve functionality is guaranteed for _% additional cost at maximum
- Selection of CRA material should follow philosophy of trim material selection
- Actual valve design life can be sensibly increased

Conclusions

- Valves present some peculiarities that must be carefully considered
- Valves corrosion allowance is sometimes misused as only prevention of corrosion
- Malfunctions due to corrosion may occur
- Additional dedicated design features are necessary
- Cost impact is limited and should be considered (operational and maintenance overall costs to be evaluated)

Thank you!

Do you have questions?

Marco Sparisci DAFRAM SpA <u>m.sparisci@dafram.it</u>

Co-Authors:

Paolo Perroni <u>p.perroni@dafram.it</u>

Enrico Palmieri <u>e.palmieri@dafram.it</u>

